Pires Diego Paiva, Modi Kavan, Céleri Lucas Chibebe
International Institute of Physics and Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil.
School of Physics & Astronomy, Monash University, Clayton, Victoria 3800, Australia.
Phys Rev E. 2021 Mar;103(3-1):032105. doi: 10.1103/PhysRevE.103.032105.
Information theory has become an increasingly important research field to better understand quantum mechanics. Noteworthy, it covers both foundational and applied perspectives, also offering a common technical language to study a variety of research areas. Remarkably, one of the key information-theoretic quantities is given by the relative entropy, which quantifies how difficult is to tell apart two probability distributions, or even two quantum states. Such a quantity rests at the core of fields like metrology, quantum thermodynamics, quantum communication, and quantum information. Given this broadness of applications, it is desirable to understand how this quantity changes under a quantum process. By considering a general unitary channel, we establish a bound on the generalized relative entropies (Rényi and Tsallis) between the output and the input of the channel. As an application of our bounds, we derive a family of quantum speed limits based on relative entropies. Possible connections between this family with thermodynamics, quantum coherence, asymmetry, and single-shot information theory are briefly discussed.
信息论已成为一个日益重要的研究领域,以更好地理解量子力学。值得注意的是,它涵盖了基础和应用两个视角,还提供了一种通用的技术语言来研究各种研究领域。值得注意的是,关键的信息论量之一由相对熵给出,它量化了区分两个概率分布甚至两个量子态的难度。这样一个量是计量学、量子热力学、量子通信和量子信息等领域的核心。鉴于其应用的广泛性,了解这个量在量子过程下如何变化是很有必要的。通过考虑一个一般的酉信道,我们建立了信道输出与输入之间广义相对熵(雷尼熵和Tsallis熵)的一个界。作为我们界的一个应用,我们基于相对熵导出了一族量子速度极限。简要讨论了这一族与热力学、量子相干、不对称性和单次信息论之间可能的联系。