Suppr超能文献

基于状态估计误差补偿的多机器人系统协同定位方法。

Cooperative Localization Approach for Multi-Robot Systems Based on State Estimation Error Compensation.

机构信息

College of Electrical Engineering, Henan University of Technology, Zhengzhou 450052, China.

出版信息

Sensors (Basel). 2019 Sep 5;19(18):3842. doi: 10.3390/s19183842.

Abstract

In order to improve the localization accuracy of multi-robot systems, a cooperative localization approach with communication delays was proposed in this paper. In the proposed method, the reason for the time delay of the robots' cooperative localization approach was analyzed first, and then the state equation and measure equation were reconstructed by introducing the communication delays into the states and measurements. Furthermore, the cooperative localization algorithm using the extended Kalman filtering technique based on state estimation error compensation was proposed to reduce the state estimation error of delay filtering. Finally, the simulation and experiment results demonstrated that the proposed algorithm can achieve good performance in location in the presence of communication delay while having reduced computational and communicative cost.

摘要

为了提高多机器人系统的本地化精度,本文提出了一种具有通信延迟的协同本地化方法。在提出的方法中,首先分析了机器人协同本地化方法的时间延迟的原因,然后通过将通信延迟引入状态和测量值来重构状态方程和测量方程。此外,提出了一种基于状态估计误差补偿的扩展卡尔曼滤波技术的协同定位算法,以减小延迟滤波的状态估计误差。最后,仿真和实验结果表明,所提出的算法在存在通信延迟的情况下能够在位置方面取得良好的性能,同时降低了计算和通信成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f82/6767216/6bf8f8c58608/sensors-19-03842-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验