Suppr超能文献

一种用于多机器人编队运动轨迹融合估计的高阶卡尔曼滤波方法。

A High-Order Kalman Filter Method for Fusion Estimation of Motion Trajectories of Multi-Robot Formation.

作者信息

Wang Miao, Liu Weifeng, Wen Chenglin

机构信息

School of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.

School of Automation, Guangdong University of Petrochemical Technology, Maoming 525000, China.

出版信息

Sensors (Basel). 2022 Jul 26;22(15):5590. doi: 10.3390/s22155590.

Abstract

Multi-robot motion and observation generally have nonlinear characteristics; in response to the problem that the existing extended Kalman filter (EKF) algorithm used in robot position estimation only considers first-order expansion and ignores the higher-order information, this paper proposes a multi-robot formation trajectory based on the high-order Kalman filter method. The joint estimation method uses Taylor expansion of the state equation and observation equation and introduces remainder variables on this basis, which effectively improves the estimation accuracy. In addition, the truncation error and rounding error of the filtering algorithm before and after the introduction of remainder variables, respectively, are compared. Our analysis shows that the rounding error is much smaller than the truncation error, and the nonlinear estimation performance is greatly improved.

摘要

多机器人运动与观测一般具有非线性特征;针对机器人位置估计中现有的扩展卡尔曼滤波器(EKF)算法仅考虑一阶展开而忽略高阶信息的问题,本文提出一种基于高阶卡尔曼滤波方法的多机器人编队轨迹。联合估计方法利用状态方程和观测方程的泰勒展开,并在此基础上引入余项变量,有效提高了估计精度。此外,分别比较了引入余项变量前后滤波算法的截断误差和舍入误差。分析表明,舍入误差远小于截断误差,非线性估计性能得到极大提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e904/9371216/6959e59096c3/sensors-22-05590-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验