Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Korea.
Electrodics and Electrocatalysis (EEC) Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630003, Tamil Nadu, India.
J Nanosci Nanotechnol. 2020 Apr 1;20(4):2144-2153. doi: 10.1166/jnn.2020.17313.
In this work, a magneto-biosensor based on iron (II, III) oxide (magnetite, Fe₃O₄) nanoparticles for the detection of uric acid is developed and demonstrated. These Fe₃O₄ nanoparticles are successfully synthesized by a co-precipitation method comprising Fe and Fe with ammonium hydroxide, NH4OH, and using citric acid as a surfactant. Comparative studies of Fe₃O₄ nanoparticles with and without surfactant are also carried out to examine their characteristics. Both types of synthesized iron oxide nanoparticles are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission-scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. The images obtained by field emission-scanning electron microscopy show an average diameter of 30 nm for citric acid-Fe₃O₄ nanoparticles. The Fourier transform infrared spectra indicate that the carboxylate groups of citric acid are bound onto the surface of magnetite nanoparticles by chemical bonds. For sensing experiments, the synthesized nanoparticles are used to modify the glassy carbon electrode, and the resultant citric acid-Fe₃O₄ modified glassy carbon electrode is used for the detection of uric acid through cyclic voltammetry. In the case of the citric acid-Fe₃O₄ nanoparticles-modified glassy carbon electrode, uric acid is oxidized at a less positive potential compared to oxidation using the naked Fe₃O₄ nanoparticles and a bare glassy carbon electrode. The citric acid-Fe₃O₄ nanoparticles-modified glassy carbon electrode exhibit a good linear response range for the detection of uric acid of 7.5 M-0.18 mM, with a lower detection limit of 7.5 M uric acid. This excellent performance of the fabricated biosensor is attributed to the larger surface area availability of citric acid-Fe₃O₄ nanoparticles, which promotes constant electron transfer between the modified glassy carbon electrode and the biomolecules (uric acid). The improved electrocatalytic activity of this modified electrode clearly proves that the proposed method is promising for the development of other electrochemical biosensors.
在这项工作中,开发并展示了一种基于氧化铁(磁铁矿,Fe₃O₄)纳米粒子的磁生物传感器,用于尿酸的检测。这些 Fe₃O₄ 纳米粒子是通过共沉淀法成功合成的,该方法包括 Fe 和 Fe 与氨水溶液 NH4OH 反应,并使用柠檬酸作为表面活性剂。还进行了具有和不具有表面活性剂的 Fe₃O₄ 纳米粒子的比较研究,以检查它们的特性。两种类型的合成氧化铁纳米粒子都通过 X 射线衍射、X 射线光电子能谱、场发射扫描电子显微镜、透射电子显微镜和振动样品磁强计进行了表征。场发射扫描电子显微镜获得的图像显示柠檬酸-Fe₃O₄ 纳米粒子的平均直径为 30nm。傅里叶变换红外光谱表明,柠檬酸的羧酸盐基团通过化学键结合到磁铁矿纳米粒子的表面上。对于传感实验,将合成的纳米粒子用于修饰玻碳电极,并且所得柠檬酸-Fe₃O₄ 修饰玻碳电极通过循环伏安法用于尿酸的检测。在柠檬酸-Fe₃O₄ 纳米粒子修饰的玻碳电极的情况下,与使用裸露的 Fe₃O₄ 纳米粒子和裸露的玻碳电极相比,尿酸在更负的电位下被氧化。柠檬酸-Fe₃O₄ 纳米粒子修饰的玻碳电极对尿酸的检测表现出良好的线性响应范围为 7.5 M-0.18 mM,尿酸的检测下限为 7.5 M。该制备的生物传感器具有优异的性能,这归因于柠檬酸-Fe₃O₄ 纳米粒子较大的表面积,这促进了修饰的玻碳电极和生物分子(尿酸)之间的恒定电子转移。该修饰电极的改进的电催化活性清楚地证明了该方法有望用于开发其他电化学生物传感器。
J Nanosci Nanotechnol. 2020-4-1
Biosensors (Basel). 2024-5-9
Biosensors (Basel). 2023-1-4