Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
Department of Biomedicine, Aarhus University, DK-8000, Aarhus C., Denmark.
Nat Commun. 2019 Sep 6;10(1):4045. doi: 10.1038/s41467-019-11962-8.
Lysosomal enzyme deficiencies comprise a large group of genetic disorders that generally lack effective treatments. A potential treatment approach is to engineer the patient's own hematopoietic system to express high levels of the deficient enzyme, thereby correcting the biochemical defect and halting disease progression. Here, we present an efficient ex vivo genome editing approach using CRISPR-Cas9 that targets the lysosomal enzyme iduronidase to the CCR5 safe harbor locus in human CD34+ hematopoietic stem and progenitor cells. The modified cells secrete supra-endogenous enzyme levels, maintain long-term repopulation and multi-lineage differentiation potential, and can improve biochemical and phenotypic abnormalities in an immunocompromised mouse model of Mucopolysaccharidosis type I. These studies provide support for the development of genome-edited CD34+ hematopoietic stem and progenitor cells as a potential treatment for Mucopolysaccharidosis type I. The safe harbor approach constitutes a flexible platform for the expression of lysosomal enzymes making it applicable to other lysosomal storage disorders.
溶酶体酶缺乏症是一大类遗传疾病,通常缺乏有效治疗方法。一种潜在的治疗方法是对患者自身的造血系统进行工程改造,使其表达高水平的缺陷酶,从而纠正生化缺陷并阻止疾病进展。在这里,我们提出了一种使用 CRISPR-Cas9 的高效体外基因组编辑方法,该方法将溶酶体酶艾杜糖醛酸酶靶向到人类 CD34+造血干细胞和祖细胞的 CCR5 安全港基因座。修饰后的细胞分泌超内源性酶水平,保持长期的重建和多谱系分化潜力,并能改善免疫缺陷小鼠粘多糖贮积症 I 型模型中的生化和表型异常。这些研究为开发经基因组编辑的 CD34+造血干细胞和祖细胞作为粘多糖贮积症 I 型的潜在治疗方法提供了支持。安全港方法构成了表达溶酶体酶的灵活平台,使其适用于其他溶酶体贮积症。