Suppr超能文献

用于超疏水聚四氟乙烯表面的非平衡混合有机等离子体处理及其在潜在生物界面应用中的研究

Non-equilibrium hybrid organic plasma processing for superhydrophobic PTFE surface towards potential bio-interface applications.

作者信息

Vijayan Vineeth M, Tucker Bernabe S, Baker Paul A, Vohra Yogesh K, Thomas Vinoy

机构信息

Center for Nanoscale Materials and Biointergration, College of Arts and Sciences, University of Alabama at Birmingham, 1300 University Blvd. CH 386 Birmingham, AL 35294, United States; Polymers & Healthcare Materials/ Devices, Department of Material Science and Engineering, University of Alabama at Birmingham, 1150 10th Avenue SouthBirmingham, AL 35294, United States.

Polymers & Healthcare Materials/ Devices, Department of Material Science and Engineering, University of Alabama at Birmingham, 1150 10th Avenue SouthBirmingham, AL 35294, United States.

出版信息

Colloids Surf B Biointerfaces. 2019 Nov 1;183:110463. doi: 10.1016/j.colsurfb.2019.110463. Epub 2019 Aug 27.

Abstract

Superhydrophobic surfaces have gained increased attention due to the high water-repellency and self-cleaning capabilities of these surfaces. In the present study, we explored a novel hybrid method of fabricating superhydrophobic poly(tetrafluoroethylene) (PTFE) surfaces by combining the physical etching capability of oxygen plasma with the plasma-induced polymerization of a organic monomer methyl methacrylate (MMA). This novel hybrid combination of oxygen-MMA plasma has resulted in the generation of superhydrophobic PTFE surfaces with contact angle of 154°. We hypothesized that the generation of superhydrophobicity may be attributed to the generation of fluorinated poly(methyl methacrylate) (PMMA) moieties formed by the combined effects of physical etching causing de-fluorination of PTFE and the subsequent plasma polymerization of MMA. The plasma treated PTFE surfaces were then systematically characterized via XPS, FTIR, XRD, DSC and SEM analyses. The results have clearly shown a synergistic effect of the oxygen/MMA combination in comparison with either the oxygen plasma alone or MMA vapors alone. Furthermore, the reported new hybrid combination of Oxygen-MMA plasma has been demonstrated to achieve superhydrophobicity at lower power and short time scales than previously reported methods in the literature. Hence the reported novel hybrid strategy of fabricating superhydrophobic PTFE surfaces could have futuristic potential towards biointerface applications.

摘要

超疏水表面因其高拒水性和自清洁能力而受到越来越多的关注。在本研究中,我们探索了一种新颖的混合方法来制备超疏水聚四氟乙烯(PTFE)表面,该方法是将氧等离子体的物理蚀刻能力与有机单体甲基丙烯酸甲酯(MMA)的等离子体诱导聚合相结合。这种新颖的氧 - MMA等离子体混合组合产生了接触角为154°的超疏水PTFE表面。我们假设超疏水性的产生可能归因于通过物理蚀刻导致PTFE脱氟以及随后MMA的等离子体聚合的联合作用而形成的氟化聚(甲基丙烯酸甲酯)(PMMA)部分。然后通过XPS、FTIR、XRD、DSC和SEM分析对经等离子体处理的PTFE表面进行系统表征。结果清楚地表明,与单独的氧等离子体或单独的MMA蒸汽相比,氧/MMA组合具有协同效应。此外,已证明所报道的氧 - MMA等离子体新混合组合在比文献中先前报道的方法更低的功率和更短的时间尺度下实现超疏水性。因此,所报道的制备超疏水PTFE表面的新颖混合策略在生物界面应用方面可能具有未来潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验