CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain.
CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
Acta Biomater. 2019 Nov;99:426-432. doi: 10.1016/j.actbio.2019.09.002. Epub 2019 Sep 5.
By the appropriate selection of functional peptides and proper accommodation sites, we have generated a set of multifunctional proteins that combine selectivity for CXCR4 cell binding and relevant endosomal escape capabilities linked to the viral peptide HA2. In particular, the construct T22-GFP-HA2-H6 forms nanoparticles that upon administration in mouse models of human, CXCR4 colorectal cancer, accumulates in primary tumor at levels significantly higher than the parental T22-GFP-H6 HA2-lacking version. The in vivo application of a CXCR4 antagonist has confirmed the prevalence of the CXCR4 tumor tissue selectivity over unspecific cell penetration, upon systemic administration of the material. Such specificity is combined with improved endosomal escape, what overall results in a precise and highly efficient tumor biodistribution. These data strongly support the functional recruitment as a convenient approach to generate protein materials for clinical applications. More precisely, they also support the unexpected concept that enhancing the unspecific membrane activity of a protein material does not necessarily compromise, but it can even improve, the selective cell targeting offered by an accompanying functional module. STATEMENT OF SIGNIFICANCE: We have shown here that the combination of cell-penetrating and tumor cell-targeting peptides dramatically enhances precise tumor accumulation of protein-only nanoparticles intended for selective drug delivery, in mouse models of human colorectal cancer. This fact is a step forward for the rational design of multifunctional protein nanomaterials for improved cancer therapies.
通过适当选择功能肽和适当的容纳位点,我们生成了一组多功能蛋白,它们将 CXCR4 细胞结合的选择性与相关的内体逃逸能力与病毒肽 HA2 结合在一起。特别是,构建体 T22-GFP-HA2-H6 形成纳米颗粒,在人、CXCR4 结直肠癌的小鼠模型中给药后,在原发性肿瘤中的积累水平明显高于缺乏亲本 T22-GFP-H6HA2 的版本。CXCR4 拮抗剂的体内应用证实了 CXCR4 肿瘤组织选择性超过非特异性细胞穿透的普遍性,在全身性给予该材料后。这种特异性与增强的内体逃逸相结合,总体上导致精确和高效的肿瘤生物分布。这些数据强烈支持将功能募集作为一种方便的方法来生成用于临床应用的蛋白质材料。更确切地说,它们还支持一个意外的概念,即增强蛋白质材料的非特异性膜活性不一定会损害,甚至可以改善伴随功能模块提供的选择性细胞靶向。意义声明:我们在这里表明,细胞穿透肽和肿瘤细胞靶向肽的组合可显著增强用于选择性药物递送的仅蛋白纳米颗粒在人结直肠癌小鼠模型中的精确肿瘤积累。这一事实是为改进癌症治疗的多功能蛋白质纳米材料的合理设计迈出了一步。