Suppr超能文献

利用多种方法识别关键源区,以有效减轻面源污染。

Identifying critical source areas using multiple methods for effective diffuse pollution mitigation.

机构信息

Department of Geography, Durham University, Durham, DH1 3LE, UK.

Lake Ecosystems Group, Centre for Hydrology & Ecology, Bailrigg, Lancaster, LA1 4AP, UK.

出版信息

J Environ Manage. 2019 Nov 15;250:109366. doi: 10.1016/j.jenvman.2019.109366. Epub 2019 Sep 5.

Abstract

Diffuse pollution from agriculture constitutes a key pressure on the water quality of freshwaters and is frequently the cause of ecological degradation. The problem of diffuse pollution can be conceptualised with a source-mobilisation-pathway (or delivery)-impact model, whereby the combination of high source risk and strong connected pathways leads to 'critical source areas' (CSAs). These areas are where most diffuse pollution will originate, and hence are the optimal places to implement mitigation measures. However, identifying the locations of these areas is a key problem across different spatial scales within catchments. A number of approaches are frequently used for this assessment, although comparisons of these assessments are rarely carried out. We evaluate the CSAs identified via traditional walkover surveys supported by three different approaches, highlighting their benefits and disadvantages. These include a custom designed smartphone app; a desktop geographic information system (GIS) and terrain analysis-based SCIMAP (Sensitive Catchment Integrated Modelling and Analysis Platform) approach; and the use of a high spatial resolution drone dataset as an improved input data for SCIMAP modelling. Each of these methods captures the locations of the CSAs, revealing similarities and differences in the prioritisation of CSA features. The differences are due to the temporal and spatial resolution of the three methods such as the use of static land cover information, the ability to capture small scale features, such as gateways and the incomplete catchment coverage of the walkover survey. The relative costs and output resolutions of the three methods indicate that they are suitable for application at different catchment scales in conjunction with other methods. Based on the results in this paper, it is recommended that a multi-evidence-based approach to diffuse pollution management is taken across catchment spatial scales, incorporating local knowledge from the walkover with the different data resolutions of the SCIMAP approach.

摘要

农业面源污染对淡水水质构成了主要压力,也是生态退化的主要原因。面源污染问题可以用源-迁移途径(或输送)-影响模型来概念化,其中高源风险和强连通途径的组合导致“关键源区”(CSAs)。这些区域是大多数面源污染的来源,因此是实施缓解措施的最佳地点。然而,在不同的流域空间尺度上,确定这些区域的位置是一个关键问题。经常使用几种方法来进行这种评估,尽管很少对这些评估进行比较。我们通过三种不同的方法(包括一个定制的智能手机应用程序、一个桌面地理信息系统(GIS)和基于地形分析的 SCIMAP(敏感流域综合建模和分析平台)方法)评估了传统步行调查确定的 CSA,并强调了它们的优缺点。这些方法中的每一种都可以捕捉到 CSA 的位置,揭示了 CSA 特征优先排序的相似性和差异性。这些差异是由于三种方法的时间和空间分辨率不同,例如静态土地覆盖信息的使用、捕捉小尺度特征(如门户)的能力以及步行调查对流域的不完全覆盖。三种方法的相对成本和输出分辨率表明,它们适用于不同流域尺度的应用,并与其他方法结合使用。基于本文的结果,建议在流域空间尺度上采用基于多证据的面源污染管理方法,将步行调查的本地知识与 SCIMAP 方法的不同数据分辨率相结合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验