Suppr超能文献

将有限元建模和 3D 打印技术相结合,用于设计用于组织工程的仿生聚合物支架。

Integrating finite element modelling and 3D printing to engineer biomimetic polymeric scaffolds for tissue engineering.

机构信息

Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.

Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.

出版信息

Connect Tissue Res. 2020 Mar;61(2):174-189. doi: 10.1080/03008207.2019.1656720. Epub 2019 Sep 8.

Abstract

The suitability of a scaffold for tissue engineering is determined by a number of interrelated factors. The biomaterial should be biocompatible and cell instructive, with a porosity and pore interconnectivity that facilitates cellular migration and the transport of nutrients and waste products into and out of the scaffolds. For the engineering of load bearing tissues, the scaffold may also be required to possess specific mechanical properties and/or ensure the transfer of mechanical stimuli to cells to direct their differentiation. Achieving these design goals is challenging, but could potentially be realised by integrating computational tools such as finite element (FE) modelling with three-dimensional (3D) printing techniques to assess how scaffold architecture and material properties influence the performance of the implant. In this study we first use Fused Deposition Modelling (FDM) to modulate the architecture of polycaprolactone (PCL) scaffolds, exploring the influence of varying fibre diameter, spacing and laydown pattern on the structural and mechanical properties of such scaffolds. We next demonstrate that a simple FE modelling strategy, which captures key aspects of the printed scaffold's actual geometry and material behaviour, can be used to accurately model the mechanical characteristics of such scaffolds. We then show the utility of this strategy by using FE modelling to help design 3D printed scaffolds with mechanical properties mimicking that of articular cartilage. In conclusion, this study demonstrates that a relatively simple FE modelling approach can be used to inform the design of 3D printed scaffolds to ensure their bulk mechanical properties mimic specific target tissues.

摘要

支架用于组织工程的适用性由许多相互关联的因素决定。生物材料应该具有生物相容性和细胞诱导性,具有合适的孔隙率和连通性,以促进细胞迁移以及营养物质和代谢废物的进出。对于承重组织的工程,支架还可能需要具有特定的机械性能,或者确保将机械刺激传递到细胞,以指导其分化。实现这些设计目标具有挑战性,但通过将计算工具(如有限元(FE)建模)与三维(3D)打印技术集成,有可能实现这些目标,以评估支架结构和材料性能如何影响植入物的性能。在这项研究中,我们首先使用熔融沉积建模(FDM)来调节聚己内酯(PCL)支架的结构,探索改变纤维直径、间距和铺设方式对这些支架的结构和机械性能的影响。接下来,我们证明了一种简单的 FE 建模策略,该策略可以捕捉到打印支架实际几何形状和材料行为的关键方面,可以用于准确模拟此类支架的机械特性。然后,我们通过使用 FE 建模来帮助设计具有类似于关节软骨机械性能的 3D 打印支架,展示了这种策略的实用性。总之,本研究表明,相对简单的 FE 建模方法可用于指导 3D 打印支架的设计,以确保其整体机械性能模拟特定的目标组织。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验