Suppr超能文献

光调控酶变构通过光响应非天然氨基酸。

Light Regulation of Enzyme Allostery through Photo-responsive Unnatural Amino Acids.

机构信息

Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.

Institute of Organic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.

出版信息

Cell Chem Biol. 2019 Nov 21;26(11):1501-1514.e9. doi: 10.1016/j.chembiol.2019.08.006. Epub 2019 Sep 5.

Abstract

Imidazole glycerol phosphate synthase (ImGPS) is an allosteric bienzyme complex in which substrate binding to the synthase subunit HisF stimulates the glutaminase subunit HisH. To control this stimulation with light, we have incorporated the photo-responsive unnatural amino acids phenylalanine-4'-azobenzene (AzoF), o-nitropiperonyl-O-tyrosine (NPY), and methyl-o-nitropiperonyllysine (mNPK) at strategic positions of HisF. The light-mediated isomerization of AzoF at position 55 (fS55AzoF ↔ fS55AzoF) resulted in a reversible 10-fold regulation of HisH activity. The light-mediated decaging of NPY at position 39 (fY39NPY → fY39) and of mNPK at position 99 (fK99mNPK → fK99) led to a 4- to 6-fold increase of HisH activity. Molecular dynamics simulations explained how the unnatural amino acids interfere with the allosteric machinery of ImGPS and revealed additional aspects of HisH stimulation in wild-type ImGPS. Our findings show that unnatural amino acids can be used as a powerful tool for the spatiotemporal control of a central metabolic enzyme complex by light.

摘要

咪唑甘油磷酸合酶(ImGPS)是一种变构双酶复合物,其中底物与合酶亚基 HisF 的结合刺激谷氨酰胺酶亚基 HisH。为了用光来控制这种刺激,我们在 HisF 的关键位置引入了光响应的非天然氨基酸苯丙氨酸-4'-偶氮苯(AzoF)、邻硝基胡椒基-O-酪氨酸(NPY)和甲基-O-硝基胡椒基赖氨酸(mNPK)。位置 55 的 AzoF 的光诱导异构化(fS55AzoF↔fS55AzoF)导致 HisH 活性的可逆 10 倍调节。位置 39 的 NPY 的光去封端(fY39NPY→fY39)和位置 99 的 mNPK 的光去封端(fK99mNPK→fK99)导致 HisH 活性增加 4 到 6 倍。分子动力学模拟解释了非天然氨基酸如何干扰 ImGPS 的变构机制,并揭示了野生型 ImGPS 中 HisH 刺激的其他方面。我们的发现表明,非天然氨基酸可用作通过光对中央代谢酶复合物进行时空控制的强大工具。

相似文献

1
Light Regulation of Enzyme Allostery through Photo-responsive Unnatural Amino Acids.
Cell Chem Biol. 2019 Nov 21;26(11):1501-1514.e9. doi: 10.1016/j.chembiol.2019.08.006. Epub 2019 Sep 5.
2
Significance of the Protein Interface Configuration for Allostery in Imidazole Glycerol Phosphate Synthase.
Biochemistry. 2020 Jul 28;59(29):2729-2742. doi: 10.1021/acs.biochem.0c00332. Epub 2020 Jul 13.
6
Subunit interactions and glutamine utilization by Escherichia coli imidazole glycerol phosphate synthase.
J Bacteriol. 2001 Feb;183(3):989-96. doi: 10.1128/JB.182.3.989-996.2001.
7
Time Evolution of the Millisecond Allosteric Activation of Imidazole Glycerol Phosphate Synthase.
J Am Chem Soc. 2022 Apr 27;144(16):7146-7159. doi: 10.1021/jacs.1c12629. Epub 2022 Apr 12.
9
Allosteric pathways in imidazole glycerol phosphate synthase.
Proc Natl Acad Sci U S A. 2012 May 29;109(22):E1428-36. doi: 10.1073/pnas.1120536109. Epub 2012 May 14.
10
Millisecond dynamics in the allosteric enzyme imidazole glycerol phosphate synthase (IGPS) from Thermotoga maritima.
J Biomol NMR. 2009 Sep;45(1-2):73-84. doi: 10.1007/s10858-009-9337-8. Epub 2009 Jun 30.

引用本文的文献

2
Genetically Encoded Lysine Analogues with Differential Light Sensitivity for Activation of Protein Function.
ChemPhotoChem. 2024 Jul;8(7). doi: 10.1002/cptc.202300312. Epub 2024 Feb 27.
3
Expanding the Repertoire of Photoswitchable Unnatural Amino Acids for Enzyme Engineering.
Angew Chem Int Ed Engl. 2025 Sep 15;64(38):e202508562. doi: 10.1002/anie.202508562. Epub 2025 Aug 4.
4
ATP13A1 engages SEC61 to facilitate substrate-specific translocation.
Sci Adv. 2025 Jun 13;11(24):eadt1346. doi: 10.1126/sciadv.adt1346. Epub 2025 Jun 11.
5
Reversible Substrate-Specific Photocontrol of the Chemotherapeutic Asparaginase(-Glutaminase) from .
ACS Catal. 2025 May 6;15(10):8462-8478. doi: 10.1021/acscatal.5c01608. eCollection 2025 May 16.
6
Photocontrolling the Enantioselectivity of a Phosphotriesterase via Incorporation of a Light-Responsive Unnatural Amino Acid.
JACS Au. 2025 Feb 5;5(2):858-870. doi: 10.1021/jacsau.4c01106. eCollection 2025 Feb 24.
7
Optogenetics with Atomic Precision─A Comprehensive Review of Optical Control of Protein Function through Genetic Code Expansion.
Chem Rev. 2025 Feb 26;125(4):1663-1717. doi: 10.1021/acs.chemrev.4c00224. Epub 2025 Feb 10.
8
Protein purification with light via a genetically encoded azobenzene side chain.
Nat Commun. 2024 Dec 18;15(1):10693. doi: 10.1038/s41467-024-55212-y.
9
Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies.
Chem Rev. 2024 Nov 27;124(22):12498-12550. doi: 10.1021/acs.chemrev.4c00181. Epub 2024 Nov 7.
10
Conformational Modulation of a Mobile Loop Controls Catalysis in the (βα)-Barrel Enzyme of Histidine Biosynthesis HisF.
JACS Au. 2024 Aug 15;4(8):3258-3276. doi: 10.1021/jacsau.4c00558. eCollection 2024 Aug 26.

本文引用的文献

1
Development of photolabile protecting groups and their application to the optochemical control of cell signaling.
Curr Opin Struct Biol. 2019 Aug;57:164-175. doi: 10.1016/j.sbi.2019.03.028. Epub 2019 May 25.
2
Time-resolved protein activation by proximal decaging in living systems.
Nature. 2019 May;569(7757):509-513. doi: 10.1038/s41586-019-1188-1. Epub 2019 May 8.
3
Optical control of sphingosine-1-phosphate formation and function.
Nat Chem Biol. 2019 Jun;15(6):623-631. doi: 10.1038/s41589-019-0269-7. Epub 2019 Apr 29.
4
Inherent versus induced protein flexibility: Comparisons within and between apo and holo structures.
PLoS Comput Biol. 2019 Jan 30;15(1):e1006705. doi: 10.1371/journal.pcbi.1006705. eCollection 2019 Jan.
5
Surface-Induced Dissociation of Noncovalent Protein Complexes in an Extended Mass Range Orbitrap Mass Spectrometer.
Anal Chem. 2019 Mar 5;91(5):3611-3618. doi: 10.1021/acs.analchem.8b05605. Epub 2019 Feb 12.
6
Eigenvector centrality for characterization of protein allosteric pathways.
Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):E12201-E12208. doi: 10.1073/pnas.1810452115. Epub 2018 Dec 10.
7
Enzymatic complexes across scales.
Essays Biochem. 2018 Oct 26;62(4):501-514. doi: 10.1042/EBC20180008.
8
Reversible and Tunable Photoswitching of Protein Function through Genetic Encoding of Azobenzene Amino Acids in Mammalian Cells.
Chembiochem. 2018 Oct 18;19(20):2178-2185. doi: 10.1002/cbic.201800226. Epub 2018 Oct 2.
9
Recent advances in the optical control of protein function through genetic code expansion.
Curr Opin Chem Biol. 2018 Oct;46:99-107. doi: 10.1016/j.cbpa.2018.07.011. Epub 2018 Jul 26.
10
In Vivo Photopharmacology.
Chem Rev. 2018 Nov 14;118(21):10710-10747. doi: 10.1021/acs.chemrev.8b00037. Epub 2018 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验