Suppr超能文献

固有蛋白与诱导蛋白的柔性:去折叠态和天然态结构内及结构间的比较。

Inherent versus induced protein flexibility: Comparisons within and between apo and holo structures.

机构信息

Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America.

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America.

出版信息

PLoS Comput Biol. 2019 Jan 30;15(1):e1006705. doi: 10.1371/journal.pcbi.1006705. eCollection 2019 Jan.

Abstract

Understanding how ligand binding influences protein flexibility is important, especially in rational drug design. Protein flexibility upon ligand binding is analyzed herein using 305 proteins with 2369 crystal structures with ligands (holo) and 1679 without (apo). Each protein has at least two apo and two holo structures for analysis. The inherent variation in structures with and without ligands is first established as a baseline. This baseline is then compared to the change in conformation in going from the apo to holo states to probe induced flexibility. The inherent backbone flexibility across the apo structures is roughly the same as the variation across holo structures. The induced backbone flexibility across apo-holo pairs is larger than that of the apo or holo states, but the increase in RMSD is less than 0.5 Å. Analysis of χ1 angles revealed a distinctly different pattern with significant influences seen for ligand binding on side-chain conformations in the binding site. Within the apo and holo states themselves, the variation of the χ1 angles is the same. However, the data combining both apo and holo states show significant displacements. Upon ligand binding, χ1 angles are frequently pushed to new orientations outside the range seen in the apo states. Influences on binding-site variation could not be easily attributed to features such as ligand size or x-ray structure resolution. By combining these findings, we find that most binding site flexibility is compatible with the common practice in flexible docking, where backbones are kept rigid and side chains are allowed some degree of flexibility.

摘要

理解配体结合如何影响蛋白质的柔韧性非常重要,特别是在合理药物设计中。本文使用 305 种具有 2369 个配体(全构象)和 1679 个无配体(空构象)晶体结构的蛋白质来分析蛋白质在配体结合时的柔韧性。每个蛋白质至少有两个空构象和两个全构象结构用于分析。首先确定有无配体时结构的固有差异作为基线。然后将基线与从空构象到全构象的构象变化进行比较,以探测诱导的柔韧性。无配体时的固有骨架柔韧性与全构象结构的变化大致相同。从 apo-holo 对中诱导的骨架柔韧性大于 apo 或 holo 状态,但 RMSD 的增加小于 0.5 Å。对 χ1 角的分析显示出明显不同的模式,配体结合对结合部位侧链构象有明显的影响。在 apo 和 holo 状态本身中,χ1 角的变化是相同的。然而,同时结合 apo 和 holo 状态的数据显示出显著的位移。配体结合后,χ1 角经常被推到 apo 状态中未见的新方向。结合部位的变异不能简单地归因于配体大小或 X 射线结构分辨率等特征。通过结合这些发现,我们发现大多数结合部位的柔韧性与柔性对接中的常见做法兼容,在这种做法中,骨架保持刚性,侧链允许一定程度的柔韧性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验