de la Mata María, Catalán-Gómez Sergio, Nucciarelli Flavio, Pau José L, Molina Sergio I
Departamento de Ciencia de los Materiales, Ing. Met. y Qca.Inorg., IMEYMAT, Universidad de Cádiz, 11510, Puerto Real, Spain.
Grupo de Electrónica y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
Small. 2019 Oct;15(43):e1902920. doi: 10.1002/smll.201902920. Epub 2019 Sep 9.
Plasmonics has emerged as an attractive field driving the development of optical systems in order to control and exploit light-matter interactions. The increasing interest around plasmonic systems is pushing the research of alternative plasmonic materials, spreading the operability range from IR to UV. Within this context, gallium appears as an ideal candidate, potentially active within a broad spectral range (UV-VIS-IR), whose optical properties are scarcely reported. Importantly, the smart design of active plasmonic materials requires their characterization at high spatial and spectral resolution to access the optical fingerprint of individual nanostructures, attainable by transmission electron microscopy techniques (i.e., by means of electron energy-loss spectroscopy, EELS). Therefore, the optical response of individual Ga nanoparticles (NPs) by means of EELS measurements is analyzed, in order to spread the understanding of the plasmonic response of Ga NPs. The results show that single Ga NPs may support several plasmon modes, whose nature is extensively discussed.
等离激元学已成为一个极具吸引力的领域,推动着光学系统的发展,以控制和利用光与物质的相互作用。对等离激元系统日益增长的兴趣促使人们研究替代等离激元材料,将其可操作性范围从红外扩展到紫外。在此背景下,镓似乎是一个理想的候选材料,它可能在很宽的光谱范围(紫外-可见-红外)内具有活性,但其光学性质鲜有报道。重要的是,活性等离激元材料的智能设计需要在高空间和光谱分辨率下对其进行表征,以获取单个纳米结构的光学指纹,这可通过透射电子显微镜技术(即通过电子能量损失谱,EELS)实现。因此,通过EELS测量分析了单个镓纳米颗粒(NPs)的光学响应,以加深对镓纳米颗粒等离激元响应的理解。结果表明,单个镓纳米颗粒可能支持多种等离激元模式,并对其性质进行了广泛讨论。