Konečná Andrea, Neuman Tomáš, Aizpurua Javier, Hillenbrand Rainer
Materials Physics Center, CSIC-UPV/EHU , Donostia-San Sebastián , 20018 , Spain.
Donostia International Physics Center DIPC , Donostia-San Sebastián , 20018 , Spain.
ACS Nano. 2018 May 22;12(5):4775-4786. doi: 10.1021/acsnano.8b01481. Epub 2018 May 1.
Electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM) is becoming an important technique in spatially resolved spectral characterization of optical and vibrational properties of matter at the nanoscale. EELS has played a significant role in understanding localized polaritonic excitations in nanoantennas and also allows for studying molecular excitations in nanoconfined samples. Here we theoretically describe the interaction of a localized electron beam with molecule-covered polaritonic nanoantennas, and propose the concept of surface-enhanced molecular EELS exploiting the electromagnetic coupling between the nanoantenna and the molecular sample. Particularly, we study plasmonic and infrared phononic antennas covered by molecular layers, exhibiting either an excitonic or vibrational response. We demonstrate that EEL spectra of these molecule-antenna coupled systems exhibit Fano-like or strong coupling features, similar to the ones observed in far-field optical and infrared spectroscopy. EELS offers the advantage to acquire spectral information with nanoscale spatial resolution, and importantly, to control the antenna-molecule coupling on demand. Considering ongoing instrumental developments, EELS in STEM shows the potential to become a powerful tool for fundamental studies of molecules that are naturally or intentionally located on nanostructures supporting localized plasmon or phonon polaritons. Surface-enhanced EELS might also enable STEM-EELS applications such as remote- and thus damage-free-sensing of the excitonic and vibrational response of molecules, quantum dots, or 2D materials.
扫描透射电子显微镜(STEM)中的电子能量损失谱(EELS)正成为一种重要技术,用于在纳米尺度上对物质的光学和振动特性进行空间分辨光谱表征。EELS在理解纳米天线中的局域极化激元激发方面发挥了重要作用,还能够研究纳米受限样品中的分子激发。在此,我们从理论上描述了局域电子束与分子覆盖的极化子纳米天线之间的相互作用,并提出了利用纳米天线与分子样品之间的电磁耦合实现表面增强分子EELS的概念。特别地,我们研究了被分子层覆盖的等离子体和红外声子天线,它们表现出激子或振动响应。我们证明,这些分子 - 天线耦合系统的EEL光谱呈现出类似Fano或强耦合特征,类似于在远场光学和红外光谱中观察到的特征。EELS具有以纳米级空间分辨率获取光谱信息的优势,重要的是,能够按需控制天线 - 分子耦合。考虑到当前仪器的发展,STEM中的EELS显示出成为研究自然或有意位于支持局域等离子体或声子极化子的纳米结构上的分子的基础研究的强大工具的潜力。表面增强EELS还可能使STEM - EELS应用成为可能,例如对分子、量子点或二维材料的激子和振动响应进行远程且无损的传感。