Yang Xi
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
ACS Omega. 2019 Aug 15;4(9):13824-13833. doi: 10.1021/acsomega.9b01446. eCollection 2019 Aug 27.
It is a huge challenge to have a controllable interfacial polymerization in the fabrication process of nanofiltration (NF) membranes. In this work, a polyphenol interlayer consisting of polyethyleneimine (PEI)/tannic acid (TA) was simply assembled on the polysulfone (PSf) substrate to fine-tune the interfacial polymerization process, without additional changes to the typical NF membrane fabrication procedures. In addition, three decisive factors in the interfacial polymerization process were examined, including the diffusion kinetics of fluorescence-labeled piperazine (FITC-PIP), the spreading behavior of the hexane solution containing acyl chloride, and the polyamide layer formation on the porous substrate by in situ Fourier transform infrared (FT-IR) spectroscopy. The experimental results demonstrate that the diffusion kinetics of FITC-PIP is greatly reduced, and the spreading behavior of the hexane solution is also impeded to some extent. Furthermore, in situ FT-IR spectroscopy demonstrates that by the mitigation of this PEI/TA interlayer, the interfacial polymerization process is greatly controlled. Moreover, the as-prepared NF membrane exhibits an increased water permeation flux of 65 L m h (at the operation pressure of 0.6 MPa), high NaSO rejection of >99%, and excellent long-term structural stability.
在纳滤(NF)膜制备过程中实现可控的界面聚合是一项巨大挑战。在本工作中,由聚乙烯亚胺(PEI)/单宁酸(TA)组成的多酚中间层被简单地组装在聚砜(PSf)基底上,以微调界面聚合过程,而无需对典型的NF膜制备程序进行额外更改。此外,研究了界面聚合过程中的三个决定性因素,包括荧光标记哌嗪(FITC-PIP)的扩散动力学、含酰氯己烷溶液的铺展行为以及通过原位傅里叶变换红外(FT-IR)光谱法研究多孔基底上聚酰胺层的形成。实验结果表明,FITC-PIP的扩散动力学大大降低,己烷溶液的铺展行为也在一定程度上受到阻碍。此外,原位FT-IR光谱表明,通过这种PEI/TA中间层的缓解作用,界面聚合过程得到了极大控制。而且,所制备的NF膜表现出增加的水渗透通量,为65 L m h(在0.6 MPa的操作压力下),对NaSO的高截留率>99%,以及优异的长期结构稳定性。