Wu Yecun, Ringe Stefan, Wu Chun-Lan, Chen Wei, Yang Ankun, Chen Hao, Tang Michael, Zhou Guangmin, Hwang Harold Y, Chan Karen, Cui Yi
Department of Electrical Engineering , Stanford University , Stanford , California 94305 , United States.
SUNCAT Center for Interface Science and Catalysis , Stanford University , Stanford , California 94305 , United States.
Nano Lett. 2019 Oct 9;19(10):7293-7300. doi: 10.1021/acs.nanolett.9b02888. Epub 2019 Sep 12.
A variety of methods including tuning chemical compositions, structures, crystallinity, defects and strain, and electrochemical intercalation have been demonstrated to enhance the catalytic activity. However, none of these tuning methods provide direct dynamical control during catalytic reactions. Here we propose a new method to tune the activity of catalysts through solid-state ion gating manipulation and adjustment (SIGMA) using a catalysis transistor. SIGMA can electrostatically dope the surface of catalysts with a high electron concentration over 5 × 10 cm and thus modulate both the chemical potential of the reaction intermediates and their electrical conductivity. The hydrogen evolution reaction (HER) on both pristine and defective MoS were investigated as model reactions. Our theoretical and experimental results show that the overpotential at 10 mA/cm and Tafel slope can be in situ, continuously, dynamically, and reversibly tuned over 100 mV and around 100 mV/dec, respectively.
包括调整化学成分、结构、结晶度、缺陷和应变以及电化学插层在内的多种方法已被证明可提高催化活性。然而,这些调整方法在催化反应过程中均无法提供直接的动态控制。在此,我们提出一种新方法,即通过使用催化晶体管的固态离子门控操纵与调节(SIGMA)来调整催化剂的活性。SIGMA能够以超过5×10¹⁹ cm⁻³ 的高电子浓度对催化剂表面进行静电掺杂,从而调节反应中间体的化学势及其电导率。以原始和有缺陷的二硫化钼上的析氢反应(HER)作为模型反应进行了研究。我们的理论和实验结果表明,在10 mA/cm² 时的过电位和塔菲尔斜率可分别原位、连续、动态且可逆地在超过100 mV 和约100 mV/dec 的范围内进行调节。