Govt. Degree College Baramulla, J & K, India; Department of Computer Science, jamia Milia Islamia, New Delhi, India.
Department of Computer Science, jamia Milia Islamia, New Delhi, India.
Comput Biol Chem. 2019 Dec;83:107120. doi: 10.1016/j.compbiolchem.2019.107120. Epub 2019 Sep 6.
Data generation using high throughput technologies has led to the accumulation of diverse types of molecular data. These data have different types (discrete, real, string, etc.) and occur in various formats and sizes. Datasets including gene expression, miRNA expression, protein-DNA binding data (ChIP-Seq/ChIP-ChIP), mutation data (copy number variation, single nucleotide polymorphisms), annotations, interactions, and association data are some of the commonly used biological datasets to study various cellular mechanisms of living organisms. Each of them provides a unique, complementary and partly independent view of the genome and hence embed essential information about the regulatory mechanisms of genes and their products. Therefore, integrating these data and inferring regulatory interactions from them offer a system level of biological insight in predicting gene functions and their phenotypic outcomes. To study genome functionality through regulatory networks, different methods have been proposed for collective mining of information from an integrated dataset. We survey here integration methods that reconstruct regulatory networks using state-of-the-art techniques to handle multi-omics (i.e., genomic, transcriptomic, proteomic) and other biological datasets.
利用高通量技术生成的数据导致了多种类型的分子数据的积累。这些数据具有不同的类型(离散、实、字符串等),并以各种格式和大小出现。包括基因表达、miRNA 表达、蛋白质-DNA 结合数据(ChIP-Seq/ChIP-ChIP)、突变数据(拷贝数变异、单核苷酸多态性)、注释、相互作用和关联数据在内的数据集是一些常用的生物数据集,用于研究生物体的各种细胞机制。它们中的每一个都提供了对基因组的独特、互补和部分独立的看法,因此包含了关于基因及其产物的调控机制的重要信息。因此,整合这些数据并从中推断调控相互作用,可以提供预测基因功能及其表型结果的系统水平的生物学见解。为了通过调控网络研究基因组功能,已经提出了不同的方法来从集成数据集集中挖掘信息。我们在这里调查使用最先进的技术重建调控网络的集成方法,以处理多组学(即基因组学、转录组学、蛋白质组学)和其他生物数据集。