Suppr超能文献

相关引导网络整合(CoNI),一个用于整合数值组学数据的R包,它允许使用多种图形表示来研究分子相互作用网络。

Correlation-guided Network Integration (CoNI), an R package for integrating numerical omics data that allows multiform graph representations to study molecular interaction networks.

作者信息

Monroy Kuhn José Manuel, Miok Viktorian, Lutter Dominik

机构信息

Computational Discovery Unit, Institute for Diabetes & Obesity, Helmholtz Zentrum München, Neuherberg, Germany.

German Center for Diabetes Research (DZD), Neuherberg, Germany.

出版信息

Bioinform Adv. 2022 Jun 6;2(1):vbac042. doi: 10.1093/bioadv/vbac042. eCollection 2022.

Abstract

SUMMARY

Today's immense growth in complex biological data demands effective and flexible tools for integration, analysis and extraction of valuable insights. Here, we present CoNI, a practical R package for the unsupervised integration of numerical omics datasets. Our tool is based on partial correlations to identify putative confounding variables for a set of paired dependent variables. CoNI combines two omics datasets in an integrated, complex hypergraph-like network, represented as a weighted undirected graph, a bipartite graph, or a hypergraph structure. These network representations form a basis for multiple further analyses, such as identifying priority candidates of biological importance or comparing network structures dependent on different conditions.

AVAILABILITY AND IMPLEMENTATION

The R package CoNI is available on the Comprehensive R Archive Network (https://cran.r-project.org/web/packages/CoNI/) and GitLab (https://gitlab.com/computational-discovery-research/coni). It is distributed under the GNU General Public License (version 3).

SUPPLEMENTARY INFORMATION

Supplementary data are available at online.

摘要

摘要

当今复杂生物数据的巨大增长需要有效且灵活的工具来整合、分析和提取有价值的见解。在此,我们展示了CoNI,这是一个用于无监督整合数值组学数据集的实用R包。我们的工具基于偏相关性来识别一组配对的因变量的潜在混杂变量。CoNI将两个组学数据集整合到一个类似复杂超图的网络中,该网络表示为加权无向图、二分图或超图结构。这些网络表示为多种进一步分析奠定了基础,例如识别具有生物学重要性的优先候选物或比较依赖于不同条件的网络结构。

可用性与实现

R包CoNI可在综合R存档网络(https://cran.r-project.org/web/packages/CoNI/)和GitLab(https://gitlab.com/computational-discovery-research/coni)上获取。它根据GNU通用公共许可证(第3版)分发。

补充信息

补充数据可在网上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ce/9710706/eabe83fa545a/vbac042f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验