Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi'an, Shaanxi, 710062, China.
School of Computer Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
Math Biosci Eng. 2019 Apr 30;16(5):3885-3913. doi: 10.3934/mbe.2019192.
We study the existence and asymptotic profile of endemic equilibrium (EE) of a diffusive SIS epidemic model with saturated incidence rate. By introducing the basic reproduction number R, the existence of EE is established when R > 1. The effects of diffusion rates and the saturated coefficient on asymptotic profile of EE are investigated. Our results indicate that when the diffusion rate of susceptible individuals is small and the total population N is below a certain level, or the saturated coefficient is large, the infected population dies out, while the two populations persist if at least one of the diffusion rates of the susceptible and infected individuals is large. Finally, we illustrate the influences of the population diffusion and the saturation coefficient on this model numerically.
我们研究了具有饱和发生率的扩散 SIS 传染病模型的地方病平衡点(EE)的存在性和渐近形态。通过引入基本再生数 R,当 R > 1 时,建立了 EE 的存在性。研究了扩散率和饱和系数对 EE 渐近形态的影响。结果表明,当易感个体的扩散率较小且总种群 N 低于一定水平时,或者饱和系数较大时,感染个体死亡,而如果易感个体和感染个体的扩散率至少有一个较大,则两个种群持续存在。最后,我们通过数值方法说明了种群扩散和饱和系数对该模型的影响。