Department of Mathematics, Harbin Institute of Technology, Weihai, 264209, Shandong, People's Republic of China.
Interdisciplinary Lab for Mathematical Ecology and Epidemiology, Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada.
J Math Biol. 2023 Mar 30;86(5):65. doi: 10.1007/s00285-023-01904-w.
The perception of susceptible individuals naturally lowers the transmission probability of an infectious disease but has been often ignored. In this paper, we formulate and analyze a diffusive SIS epidemic model with memory-based perceptive movement, where the perceptive movement describes a strategy for susceptible individuals to escape from infections. We prove the global existence and boundedness of a classical solution in an n-dimensional bounded smooth domain. We show the threshold-type dynamics in terms of the basic reproduction number [Formula: see text]: when [Formula: see text], the unique disease-free equilibrium is globally asymptotically stable; when [Formula: see text], there is a unique constant endemic equilibrium, and the model is uniformly persistent. Numerical analysis exhibits that when [Formula: see text], solutions converge to the endemic equilibrium for slow memory-based movement and they converge to a stable periodic solution when memory-based movement is fast. Our results imply that the memory-based movement cannot determine the extinction or persistence of infectious disease, but it can change the persistence manner.
易感个体的感知能力自然会降低传染病的传播概率,但这种能力经常被忽视。在本文中,我们构建并分析了一个具有基于记忆的感知运动的扩散 SIS 传染病模型,其中感知运动描述了易感个体逃避感染的一种策略。我们证明了在 n 维有界光滑域中经典解的整体存在性和有界性。我们根据基本再生数 [Formula: see text] 给出了阈值型动力学:当 [Formula: see text] 时,唯一的无病平衡点全局渐近稳定;当 [Formula: see text] 时,存在唯一的常数地方病平衡点,模型具有一致持久性。数值分析表明,当 [Formula: see text] 时,对于慢记忆运动,解收敛于地方病平衡点,而当记忆运动较快时,解收敛于稳定的周期解。我们的结果表明,基于记忆的运动并不能决定传染病的灭绝或持续存在,但它可以改变持续的方式。