Suppr超能文献

超越一阶的相减:平均场复 Ginzburg-Landau 方程的情况。

Phase reduction beyond the first order: The case of the mean-field complex Ginzburg-Landau equation.

机构信息

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, 39005 Santander, Spain.

出版信息

Phys Rev E. 2019 Jul;100(1-1):012211. doi: 10.1103/PhysRevE.100.012211.

Abstract

Phase reduction is a powerful technique that makes possible to describe the dynamics of a weakly perturbed limit-cycle oscillator in terms of its phase. For ensembles of oscillators, a classical example of phase reduction is the derivation of the Kuramoto model from the mean-field complex Ginzburg-Landau equation (MF-CGLE). Still, the Kuramoto model is a first-order phase approximation that displays either full synchronization or incoherence, but none of the nontrivial dynamics of the MF-CGLE. This fact calls for an expansion beyond the first order in the coupling constant. We develop an isochron-based scheme to obtain the second-order phase approximation, which reproduces the weak-coupling dynamics of the MF-CGLE. The practicality of our method is evidenced by extending the calculation up to third order. Each new term of the power-series expansion contributes with additional higher-order multibody (i.e., nonpairwise) interactions. This points to intricate multibody phase interactions as the source of pure collective chaos in the MF-CGLE at moderate coupling.

摘要

相位降阶是一种强大的技术,它使得我们可以用相位来描述弱扰的极限环振荡器的动力学。对于振荡器的集合,相位降阶的一个经典例子是从平均场复金兹堡-朗道方程(MF-CGLE)推导出的 Kuramoto 模型。然而,Kuramoto 模型是一个一阶相位近似,它显示出完全同步或非相干性,但没有 MF-CGLE 的任何非平凡动力学。这一事实需要在耦合常数的一阶以上进行扩展。我们开发了一种基于等时的方案来获得二阶相位近似,它再现了 MF-CGLE 的弱耦合动力学。我们的方法的实用性通过将计算扩展到三阶来证明。幂级数展开的每个新项都贡献了额外的高阶多体(即非成对)相互作用。这表明,在中等耦合下,MF-CGLE 中的纯集体混沌的来源是复杂的多体相位相互作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验