Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.
J Am Chem Soc. 2019 Sep 25;141(38):15433-15440. doi: 10.1021/jacs.9b08185. Epub 2019 Sep 10.
In recent years, a wide array of methods for achieving nickel-catalyzed substitution reactions of alkyl electrophiles by organometallic nucleophiles, including enantioconvergent processes, have been described; however, experiment-focused mechanistic studies of such couplings have been comparatively scarce. The most detailed mechanistic investigations to date have examined catalysts that bear tridentate ligands and, with one exception, processes that are not enantioselective; studies of catalysts based on bidentate ligands could be anticipated to be more challenging, due to difficulty in isolating proposed intermediates as a result of instability arising from coordinative unsaturation. In this investigation, we explore the mechanism of enantioconvergent Kumada reactions of racemic α-bromoketones catalyzed by a nickel complex that bears a bidentate chiral bis(oxazoline) ligand. Utilizing an array of mechanistic tools (including isolation and reactivity studies of three of the four proposed nickel-containing intermediates, as well as interrogation via EPR spectroscopy, UV-vis spectroscopy, radical probes, and DFT calculations), we provide support for a pathway in which carbon-carbon bond formation proceeds via a radical-chain process wherein a nickel(I) complex serves as the chain-carrying radical and an organonickel(II) complex is the predominant resting state of the catalyst. Computations indicate that the coupling of this organonickel(II) complex with an organic radical is the stereochemistry-determining step of the reaction.
近年来,已经描述了通过有机金属亲核试剂实现镍催化的烷基亲电试剂取代反应的广泛方法,包括对映体转化过程;然而,此类偶联的以实验为重点的机制研究相对较少。迄今为止最详细的机制研究考察了带有三角配位配体的催化剂,并且除了一个例外,这些过程都不是对映选择性的;基于双齿配体的催化剂的研究可能更具挑战性,这是由于由于配位不饱和引起的不稳定性而难以分离所提出的中间体。在这项研究中,我们探索了由带有双齿手性双恶唑啉配体的镍配合物催化的外消旋α-溴代酮的对映体转化 Kumada 反应的机理。利用一系列机制工具(包括四种提议的镍含中间体中的三种的分离和反应性研究,以及通过 EPR 光谱、UV-vis 光谱、自由基探针和 DFT 计算进行的询问),我们为碳-碳键形成通过自由基链过程进行的途径提供了支持,其中镍 (I) 配合物充当链携带自由基,而有机镍 (II) 配合物是催化剂的主要静止状态。计算表明,这种有机镍 (II) 配合物与有机自由基的偶联是反应的立体化学决定步骤。