Suppr超能文献

用于皮质下结构分割的局部标签学习(LLL):在海马体分割中的应用。

Local label learning (LLL) for subcortical structure segmentation: application to hippocampus segmentation.

作者信息

Hao Yongfu, Wang Tianyao, Zhang Xinqing, Duan Yunyun, Yu Chunshui, Jiang Tianzi, Fan Yong

机构信息

Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.

出版信息

Hum Brain Mapp. 2014 Jun;35(6):2674-97. doi: 10.1002/hbm.22359. Epub 2013 Oct 23.

Abstract

Automatic and reliable segmentation of subcortical structures is an important but difficult task in quantitative brain image analysis. Multi-atlas based segmentation methods have attracted great interest due to their promising performance. Under the multi-atlas based segmentation framework, using deformation fields generated for registering atlas images onto a target image to be segmented, labels of the atlases are first propagated to the target image space and then fused to get the target image segmentation based on a label fusion strategy. While many label fusion strategies have been developed, most of these methods adopt predefined weighting models that are not necessarily optimal. In this study, we propose a novel local label learning strategy to estimate the target image's segmentation label using statistical machine learning techniques. In particular, we use a L1-regularized support vector machine (SVM) with a k nearest neighbor (kNN) based training sample selection strategy to learn a classifier for each of the target image voxel from its neighboring voxels in the atlases based on both image intensity and texture features. Our method has produced segmentation results consistently better than state-of-the-art label fusion methods in validation experiments on hippocampal segmentation of over 100 MR images obtained from publicly available and in-house datasets. Volumetric analysis has also demonstrated the capability of our method in detecting hippocampal volume changes due to Alzheimer's disease.

摘要

在定量脑图像分析中,自动且可靠地分割皮层下结构是一项重要但困难的任务。基于多图谱的分割方法因其良好的性能而备受关注。在基于多图谱的分割框架下,利用为将图谱图像配准到待分割的目标图像而生成的变形场,首先将图谱的标签传播到目标图像空间,然后基于标签融合策略进行融合以获得目标图像的分割结果。虽然已经开发了许多标签融合策略,但这些方法大多采用不一定最优的预定义加权模型。在本研究中,我们提出了一种新颖的局部标签学习策略,使用统计机器学习技术来估计目标图像的分割标签。具体而言,我们使用具有基于k近邻(kNN)的训练样本选择策略的L1正则化支持向量机(SVM),基于图像强度和纹理特征,从图谱中的相邻体素为目标图像的每个体素学习一个分类器。在从公开可用数据集和内部数据集中获取的100多张MR图像的海马分割验证实验中,我们的方法产生的分割结果始终优于现有最先进的标签融合方法。体积分析也证明了我们的方法在检测由于阿尔茨海默病导致的海马体积变化方面的能力。

相似文献

1
Local label learning (LLL) for subcortical structure segmentation: application to hippocampus segmentation.
Hum Brain Mapp. 2014 Jun;35(6):2674-97. doi: 10.1002/hbm.22359. Epub 2013 Oct 23.
2
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.
3
Patch-Based Label Fusion with Structured Discriminant Embedding for Hippocampus Segmentation.
Neuroinformatics. 2018 Oct;16(3-4):411-423. doi: 10.1007/s12021-018-9364-2.
5
Metric Learning for Multi-atlas based Segmentation of Hippocampus.
Neuroinformatics. 2017 Jan;15(1):41-50. doi: 10.1007/s12021-016-9312-y.
7
View-centralized multi-atlas classification for Alzheimer's disease diagnosis.
Hum Brain Mapp. 2015 May;36(5):1847-65. doi: 10.1002/hbm.22741. Epub 2015 Jan 27.
8
A label fusion method using conditional random fields with higher-order potentials: Application to hippocampal segmentation.
Artif Intell Med. 2015 Jun;64(2):117-29. doi: 10.1016/j.artmed.2015.04.005. Epub 2015 May 4.
10
Discriminative confidence estimation for probabilistic multi-atlas label fusion.
Med Image Anal. 2017 Dec;42:274-287. doi: 10.1016/j.media.2017.08.008. Epub 2017 Sep 1.

引用本文的文献

1
An improved 3D-UNet-based brain hippocampus segmentation model based on MR images.
BMC Med Imaging. 2024 Jul 5;24(1):166. doi: 10.1186/s12880-024-01346-w.
2
WET-UNet: Wavelet integrated efficient transformer networks for nasopharyngeal carcinoma tumor segmentation.
Sci Prog. 2024 Apr-Jun;107(2):368504241232537. doi: 10.1177/00368504241232537.
3
Hippocampus substructure segmentation using morphological vision transformer learning.
Phys Med Biol. 2023 Dec 1;68(23):235013. doi: 10.1088/1361-6560/ad0d45.
4
Predicting Alzheimer's Disease and Quantifying Asymmetric Degeneration of the Hippocampus Using Deep Learning of Magnetic Resonance Imaging Data.
Proc IEEE Int Symp Biomed Imaging. 2023 Apr;2023. doi: 10.1109/isbi53787.2023.10230830. Epub 2023 Sep 1.
5
Deep convolutional neural network for hippocampus segmentation with boundary region refinement.
Med Biol Eng Comput. 2023 Sep;61(9):2329-2339. doi: 10.1007/s11517-023-02836-9. Epub 2023 Apr 17.
6
Deep learning for the diagnosis of mesial temporal lobe epilepsy.
PLoS One. 2023 Feb 23;18(2):e0282082. doi: 10.1371/journal.pone.0282082. eCollection 2023.
7
Hippocampus Segmentation Using U-Net Convolutional Network from Brain Magnetic Resonance Imaging (MRI).
J Digit Imaging. 2022 Aug;35(4):893-909. doi: 10.1007/s10278-022-00613-y. Epub 2022 Mar 18.
8
Automatic Liver Segmentation in CT Images with Enhanced GAN and Mask Region-Based CNN Architectures.
Biomed Res Int. 2021 Dec 16;2021:9956983. doi: 10.1155/2021/9956983. eCollection 2021.
9
Hippocampus Segmentation Method Based on Subspace Patch-Sparsity Clustering in Noisy Brain MRI.
J Healthc Eng. 2021 Sep 25;2021:3937222. doi: 10.1155/2021/3937222. eCollection 2021.
10
Pixel-Wise Classification in Hippocampus Histological Images.
Comput Math Methods Med. 2021 May 20;2021:6663977. doi: 10.1155/2021/6663977. eCollection 2021.

本文引用的文献

1
Non-local STAPLE: an intensity-driven multi-atlas rater model.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):426-34. doi: 10.1007/978-3-642-33454-2_53.
2
Regression-Based Label Fusion for Multi-Atlas Segmentation.
Conf Comput Vis Pattern Recognit Workshops. 2011 Jun 20:1113-1120. doi: 10.1109/CVPR.2011.5995382.
3
Iterative multi-atlas-based multi-image segmentation with tree-based registration.
Neuroimage. 2012 Jan 2;59(1):422-30. doi: 10.1016/j.neuroimage.2011.07.036. Epub 2011 Jul 23.
4
A supervised patch-based approach for human brain labeling.
IEEE Trans Med Imaging. 2011 Oct;30(10):1852-62. doi: 10.1109/TMI.2011.2156806. Epub 2011 May 19.
5
Robust statistical label fusion through COnsensus Level, Labeler Accuracy, and Truth Estimation (COLLATE).
IEEE Trans Med Imaging. 2011 Oct;30(10):1779-94. doi: 10.1109/TMI.2011.2147795. Epub 2011 Apr 29.
6
Accelerating image registration of MRI by GPU-based parallel computation.
Magn Reson Imaging. 2011 Jun;29(5):712-6. doi: 10.1016/j.mri.2011.02.027. Epub 2011 Apr 29.
7
Automatic morphometry in Alzheimer's disease and mild cognitive impairment.
Neuroimage. 2011 Jun 15;56(4):2024-37. doi: 10.1016/j.neuroimage.2011.03.014. Epub 2011 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验