Hao Yongfu, Wang Tianyao, Zhang Xinqing, Duan Yunyun, Yu Chunshui, Jiang Tianzi, Fan Yong
Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
Hum Brain Mapp. 2014 Jun;35(6):2674-97. doi: 10.1002/hbm.22359. Epub 2013 Oct 23.
Automatic and reliable segmentation of subcortical structures is an important but difficult task in quantitative brain image analysis. Multi-atlas based segmentation methods have attracted great interest due to their promising performance. Under the multi-atlas based segmentation framework, using deformation fields generated for registering atlas images onto a target image to be segmented, labels of the atlases are first propagated to the target image space and then fused to get the target image segmentation based on a label fusion strategy. While many label fusion strategies have been developed, most of these methods adopt predefined weighting models that are not necessarily optimal. In this study, we propose a novel local label learning strategy to estimate the target image's segmentation label using statistical machine learning techniques. In particular, we use a L1-regularized support vector machine (SVM) with a k nearest neighbor (kNN) based training sample selection strategy to learn a classifier for each of the target image voxel from its neighboring voxels in the atlases based on both image intensity and texture features. Our method has produced segmentation results consistently better than state-of-the-art label fusion methods in validation experiments on hippocampal segmentation of over 100 MR images obtained from publicly available and in-house datasets. Volumetric analysis has also demonstrated the capability of our method in detecting hippocampal volume changes due to Alzheimer's disease.
在定量脑图像分析中,自动且可靠地分割皮层下结构是一项重要但困难的任务。基于多图谱的分割方法因其良好的性能而备受关注。在基于多图谱的分割框架下,利用为将图谱图像配准到待分割的目标图像而生成的变形场,首先将图谱的标签传播到目标图像空间,然后基于标签融合策略进行融合以获得目标图像的分割结果。虽然已经开发了许多标签融合策略,但这些方法大多采用不一定最优的预定义加权模型。在本研究中,我们提出了一种新颖的局部标签学习策略,使用统计机器学习技术来估计目标图像的分割标签。具体而言,我们使用具有基于k近邻(kNN)的训练样本选择策略的L1正则化支持向量机(SVM),基于图像强度和纹理特征,从图谱中的相邻体素为目标图像的每个体素学习一个分类器。在从公开可用数据集和内部数据集中获取的100多张MR图像的海马分割验证实验中,我们的方法产生的分割结果始终优于现有最先进的标签融合方法。体积分析也证明了我们的方法在检测由于阿尔茨海默病导致的海马体积变化方面的能力。