文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

普拉梭菌来源的微生物抗炎分子通过调节紧密连接蛋白表达调控糖尿病小鼠肠道完整性。

Faecalibacterium prausnitzii-derived microbial anti-inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression.

机构信息

Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.

Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.

出版信息

J Diabetes. 2020 Mar;12(3):224-236. doi: 10.1111/1753-0407.12986. Epub 2019 Oct 30.


DOI:10.1111/1753-0407.12986
PMID:31503404
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7064962/
Abstract

BACKGROUND: Impaired intestinal barrier structure and function have been validated as an important pathogenic process in type 2 diabetes mellitus (T2DM). Gut dysbiosis is thought to be the critical factor in diabetic intestinal pathogenesis. As the most abundant commensal bacteria, Faecalibacterium prausnitzii (F. prausnitzii) play important roles in gut homeostasis. The microbial anti-inflammatory molecule (MAM), an F. prausnitzii metabolite, has anti-inflammatory potential in inflammatory bowel disease (IBD). Thus, we aimed to explore the function and mechanism of MAM on the diabetic intestinal epithelium. METHODS: 16S high-throughput sequencing was used to analyze the gut microbiota of db/db mice (T2DM mouse model). We transfected a FLAG-tagged MAM plasmid into human colonic cells to explore the protein-protein interactions and observe cell monolayer permeability. For in vivo experiments, db/db mice were supplemented with recombinant His-tagged MAM protein from E. coli BL21 (DE3). RESULTS: The abundance of F. prausnitzii was downregulated in the gut microbiota of db/db mice. Immunoprecipitation (IP) and mass spectroscopy (MS) analyses revealed that MAM potentially interacts with proteins in the tight junction pathway, including zona occludens 1 (ZO-1). FLAG-tagged MAM plasmid transfection stabilized the cell permeability and increased ZO-1 expression in NCM460, Caco2, and HT-29 cells. The db/db mice supplemented with recombinant His-tagged MAM protein showed restored intestinal barrier function and elevated ZO-1 expression. CONCLUSIONS: Our study shows that MAM from F. prausnitzii can restore the intestinal barrier structure and function in DM conditions via the regulation of the tight junction pathway and ZO-1 expression.

摘要

背景:受损的肠道屏障结构和功能已被证实是 2 型糖尿病(T2DM)的重要发病机制。肠道菌群失调被认为是糖尿病肠道发病的关键因素。作为最丰富的共生菌,普拉梭菌(F. prausnitzii)在肠道稳态中发挥重要作用。微生物抗炎分子(MAM)是 F. prausnitzii 的代谢产物,具有抗炎潜力,可用于治疗炎症性肠病(IBD)。因此,我们旨在探索 MAM 对糖尿病肠道上皮的功能和机制。

方法:使用 16S 高通量测序分析 db/db 小鼠(T2DM 小鼠模型)的肠道微生物群。我们将 FLAG 标记的 MAM 质粒转染入人结肠细胞中,以探索蛋白质-蛋白质相互作用并观察细胞单层通透性。对于体内实验,db/db 小鼠用来自 E. coli BL21(DE3)的重组 His 标记的 MAM 蛋白进行补充。

结果:db/db 小鼠肠道微生物群中 F. prausnitzii 的丰度降低。免疫沉淀(IP)和质谱(MS)分析表明,MAM 可能与紧密连接途径中的蛋白质相互作用,包括闭合蛋白 1(ZO-1)。FLAG 标记的 MAM 质粒转染可稳定细胞通透性并增加 NCM460、Caco2 和 HT-29 细胞中的 ZO-1 表达。用重组 His 标记的 MAM 蛋白补充 db/db 小鼠可恢复肠道屏障功能并提高 ZO-1 的表达。

结论:我们的研究表明,来自 F. prausnitzii 的 MAM 通过调节紧密连接途径和 ZO-1 表达,可在 DM 条件下恢复肠道屏障结构和功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0e9/7064962/f9002955c497/JDB-12-224-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0e9/7064962/8076eaa88ba8/JDB-12-224-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0e9/7064962/c7b82e4dd009/JDB-12-224-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0e9/7064962/84f41a0d228b/JDB-12-224-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0e9/7064962/47f1d9c6889b/JDB-12-224-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0e9/7064962/cc88b60e58d6/JDB-12-224-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0e9/7064962/3ed64abb2761/JDB-12-224-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0e9/7064962/f9002955c497/JDB-12-224-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0e9/7064962/8076eaa88ba8/JDB-12-224-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0e9/7064962/c7b82e4dd009/JDB-12-224-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0e9/7064962/84f41a0d228b/JDB-12-224-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0e9/7064962/47f1d9c6889b/JDB-12-224-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0e9/7064962/cc88b60e58d6/JDB-12-224-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0e9/7064962/3ed64abb2761/JDB-12-224-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0e9/7064962/f9002955c497/JDB-12-224-g007.jpg

相似文献

[1]
Faecalibacterium prausnitzii-derived microbial anti-inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression.

J Diabetes. 2019-10-30

[2]
Barrier Protection and Recovery Effects of Gut Commensal Bacteria on Differentiated Intestinal Epithelial Cells In Vitro.

Nutrients. 2020-7-28

[3]
Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice.

Gut Microbes. 2015

[4]
Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease.

Gut. 2016-3

[5]
27-Hydroxycholesterol contributes to cognitive deficits in APP/PS1 transgenic mice through microbiota dysbiosis and intestinal barrier dysfunction.

J Neuroinflammation. 2020-6-27

[6]
Supplementation Prevents Intestinal Barrier Injury and Gut Microflora Dysbiosis Induced by Sleep Deprivation.

Nutrients. 2024-4-9

[7]
Butyrate mediates anti-inflammatory effects of in intestinal epithelial cells through .

Gut Microbes. 2020-11-9

[8]
Faecalibacterium prausnitzii and a Prebiotic Protect Intestinal Health in a Mouse Model of Antibiotic and Clostridium difficile Exposure.

JPEN J Parenter Enteral Nutr. 2018-1-31

[9]
The administration of Escherichia coli Nissle 1917 ameliorates irinotecan-induced intestinal barrier dysfunction and gut microbial dysbiosis in mice.

Life Sci. 2019-6-4

[10]
Inulin-grown cross-feeds fructose to the human intestinal epithelium.

Gut Microbes. 2021

引用本文的文献

[1]
Changes in growth performance, immune function, and meat quality of yellow-feathered broilers fed meal during early-mid growth phases.

Front Vet Sci. 2025-8-8

[2]
Decoding the impact of gut microbiota on heart failure.

Genes Dis. 2025-3-6

[3]
Gut microbiota in non-alcoholic fatty liver disease: Pathophysiology, diagnosis, and therapeutics.

World J Hepatol. 2025-6-27

[4]
The Microbial Anti-Inflammatory Molecule (MAM) is a key protein processed and exported to envelope.

Gut Microbes. 2025-12

[5]
Increased maternal exercise of moderate intensity improves pregnancy outcomes of gestational diabetes mellitus patients through maintaining the balance of the gut microbiota.

Front Microbiol. 2025-5-29

[6]
Natural therapy proposed for the management of diabetic peripheral neuropathy (DPN).

Inflammopharmacology. 2025-5-30

[7]
Association between dietary index for gut microbiota and osteoarthritis in the US population: the mediating role of systemic immune-inflammation index.

Front Nutr. 2025-4-28

[8]
and evaluation of the effects of condensed tannins and catechins monomers on antioxidant and intestinal health of Chinese seabass ().

Front Vet Sci. 2025-2-25

[9]
Gut Microbiota in T2DM Patients with Microvascular Complications: A 16S rRNA Sequencing Study.

Diabetes Metab Syndr Obes. 2025-2-13

[10]
Global bibliometric analysis of traditional Chinese medicine regulating gut microbiota in the treatment of diabetes from 2004 to 2024.

Front Pharmacol. 2025-1-23

本文引用的文献

[1]
Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time.

Gut. 2019-5-30

[2]
Dietary inulin alleviates diverse stages of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in db/db mice.

Food Funct. 2019-4-17

[3]
Effects of chronic exercise on gut microbiota and intestinal barrier in human with type 2 diabetes.

Minerva Med. 2019-2

[4]
Butyrate ameliorated-NLRC3 protects the intestinal barrier in a GPR43-dependent manner.

Exp Cell Res. 2018-4-22

[5]
Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity, oxidative stress and inflammation, and normalize intestine microbiota in streptozotocin-induced diabetic rats.

Pathog Dis. 2018-6-1

[6]
Helminth infection in mice improves insulin sensitivity via modulation of gut microbiota and fatty acid metabolism.

Pharmacol Res. 2018-4-10

[7]
Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes.

Science. 2018-3-9

[8]
Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection.

Science. 2018-3-8

[9]
The Immune System Bridges the Gut Microbiota with Systemic Energy Homeostasis: Focus on TLRs, Mucosal Barrier, and SCFAs.

Front Immunol. 2017-10-30

[10]
New Insights into the Diversity of the Genus .

Front Microbiol. 2017-9-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索