Hajati Morteza, Monfared Yashar E
Appl Opt. 2019 Aug 20;58(24):6666-6671. doi: 10.1364/AO.58.006666.
Due to complementary chemical and optical characteristics, structural integration of graphene and hexagonal boron nitride (hBN) can lead to a promising platform for development of novel plasmonic devices. In this paper, we numerically investigate the modal behavior of a cylindrical graphene-coated nanowire (GNW) deposited on a thin hBN (GNW-hBN) substrate in the mid-infrared range. Our studies revealed that GNW-hBN can support hybridized plasmon-phonon modes in the upper reststrahlen band of hBN, which mainly originates from the strong coupling between plasmon modes in GNW and phonon modes in hBN. The characteristics of these hybrid modes can be effectively tuned by changing the chemical potential of graphene, hBN thickness, and gap distance between GNW and hBN. According to the results, by choosing smaller gap distances and tuning the chemical potential of graphene, GNW-hBN can exhibit a fundamental mode (m=0, where m is the azimuthal mode number) with higher effective index such that Real(n) varies from 131.2-62.3 when the hBN thickness changes from 2-20 nm. In addition, the presence of an hBN slab can break the azimuthal symmetry of the high-order graphene plasmon modes (m≥1) in the GNW-hBN structure.
由于石墨烯和六方氮化硼(hBN)具有互补的化学和光学特性,它们的结构集成可为新型等离子体器件的开发提供一个有前景的平台。在本文中,我们对沉积在薄hBN(GNW-hBN)衬底上的圆柱形石墨烯包覆纳米线(GNW)在中红外范围内的模态行为进行了数值研究。我们的研究表明,GNW-hBN在hBN的上Reststrahlen带中能够支持杂化的等离子体-声子模式,这主要源于GNW中的等离子体模式与hBN中的声子模式之间的强耦合。通过改变石墨烯的化学势、hBN厚度以及GNW与hBN之间的间隙距离,可以有效地调节这些杂化模式的特性。根据结果,通过选择较小的间隙距离并调节石墨烯的化学势,当hBN厚度从2纳米变化到20纳米时,GNW-hBN可以呈现出具有更高有效折射率的基模(m = 0,其中m是方位角模数),使得实部折射率(Real(n))在131.2 - 62.3之间变化。此外,hBN平板的存在会破坏GNW-hBN结构中高阶石墨烯等离子体模式(m≥1)的方位角对称性。