Behera Saraswati, Kim Kyoungsik
Appl Opt. 2019 Jun 20;58(18):5128-5135. doi: 10.1364/AO.58.005128.
This paper presents designs for and simulation studies on planar gradient index metasurfaces for polarization-independent and dichroic subwavelength focusing for broadband applications. Polarization-independent lenses are designed based on dielectric ( and ) gradient nanopillars. Dichroic metalenses are designed based on gradient aluminum nanohelices for helicity-dependent focusing of circularly polarized light. The helical shape is considered due to its sensitivity to circularly polarized light of a specific handedness depending upon the orientation of the helices in the lattice; this may help in 3D imaging. In the designed metalenses, the variation in the spatial dimension (fill factor) is in a gradient manner, which leads to directional bending of electromagnetic waves, and strong coupling between the bent electromagnetic waves leads to subwavelength focusing over the high numerical aperture. The designed metasurface can be materialized through multibeam interference using a combination of plane beams and a nondiffracting Bessel beam of either zeroth or first order presented through the simulated irradiance profile and a proposed single-step experimental setup. The designed -based metalens focuses the incident arbitrary or plane polarized light to a spot sized 0.314, at a wavelength of 635 nm, that is based on , enabling polarization-independent subwavelength focusing over a broad (436-810 nm) wavelength range. Realization of these lenses will enable polarization-independent high-numerical-aperture focusing and super-resolution real-time imaging of biological samples.
本文介绍了用于宽带应用中与偏振无关的二向色性亚波长聚焦的平面梯度折射率超表面的设计和仿真研究。基于介电(和)梯度纳米柱设计了与偏振无关的透镜。基于梯度铝纳米螺旋设计了二向色性金属透镜,用于圆偏振光的螺旋度相关聚焦。考虑螺旋形状是因为其对特定手性的圆偏振光的敏感性取决于晶格中螺旋的取向;这可能有助于三维成像。在所设计的金属透镜中,空间尺寸(填充因子)以梯度方式变化,这导致电磁波的定向弯曲,并且弯曲的电磁波之间的强耦合导致在高数值孔径上的亚波长聚焦。通过使用平面光束和零阶或一阶非衍射贝塞尔光束的组合进行多光束干涉,可以通过模拟的辐照度分布和提出的单步实验装置来实现所设计的超表面。所设计的基于的金属透镜在635nm波长下将入射的任意偏振或平面偏振光聚焦到尺寸为0.314的光斑上,该光斑基于,从而在宽(436 - 810nm)波长范围内实现与偏振无关的亚波长聚焦。这些透镜的实现将实现与偏振无关的高数值孔径聚焦以及生物样品的超分辨率实时成像。