Suppr超能文献

基于高斯过程的定义比革兰氏阴性大肠杆菌中的乘法模型揭示了新的、真正的遗传相互作用。

A Gaussian process-based definition reveals new and bona fide genetic interactions compared to a multiplicative model in the Gram-negative Escherichia coli.

机构信息

Department of Computer Science, SK S4S 0A2, Canada.

Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada.

出版信息

Bioinformatics. 2020 Feb 1;36(3):880-889. doi: 10.1093/bioinformatics/btz673.

Abstract

MOTIVATION

A digenic genetic interaction (GI) is observed when mutations in two genes within the same organism yield a phenotype that is different from the expected, given each mutation's individual effects. While multiplicative scoring is widely applied to define GIs, revealing underlying gene functions, it remains unclear if it is the most suitable choice for scoring GIs in Escherichia coli. Here, we assess many different definitions, including the multiplicative model, for mapping functional links between genes and pathways in E.coli.

RESULTS

Using our published E.coli GI datasets, we show computationally that a machine learning Gaussian process (GP)-based definition better identifies functional associations among genes than a multiplicative model, which we have experimentally confirmed on a set of gene pairs. Overall, the GP definition improves the detection of GIs, biological reasoning of epistatic connectivity, as well as the quality of GI maps in E.coli, and, potentially, other microbes.

AVAILABILITY AND IMPLEMENTATION

The source code and parameters used to generate the machine learning models in WEKA software were provided in the Supplementary information.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

当同一生物体中的两个基因的突变产生的表型与每个突变的个体效应所预期的不同时,就会观察到双基因遗传相互作用 (GI)。虽然乘法评分被广泛应用于定义 GI 以揭示潜在的基因功能,但对于在大肠杆菌中评分 GI 来说,它是否是最合适的选择仍不清楚。在这里,我们评估了许多不同的定义,包括乘法模型,用于在大肠杆菌中映射基因和途径之间的功能联系。

结果

使用我们已发表的大肠杆菌 GI 数据集,我们通过计算表明,基于机器学习高斯过程 (GP) 的定义比乘法模型更能识别基因之间的功能关联,我们已经在一组基因对上通过实验证实了这一点。总的来说,GP 定义提高了 GI 的检测、上位性连接的生物学推理以及大肠杆菌中 GI 图谱的质量,并且可能在其他微生物中也是如此。

可用性和实现

在 WEKA 软件中生成机器学习模型所使用的源代码和参数在补充信息中提供。

补充信息

补充数据可在生物信息学在线获得。

相似文献

5
Quantitative genome-wide genetic interaction screens reveal global epistatic relationships of protein complexes in Escherichia coli.
PLoS Genet. 2014 Feb 20;10(2):e1004120. doi: 10.1371/journal.pgen.1004120. eCollection 2014 Feb.
6
Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks.
Nat Genet. 2010 Mar;42(3):272-6. doi: 10.1038/ng.524. Epub 2010 Jan 24.
8
Novel function discovery with GeneMANIA: a new integrated resource for gene function prediction in Escherichia coli.
Bioinformatics. 2015 Feb 1;31(3):306-10. doi: 10.1093/bioinformatics/btu671. Epub 2014 Oct 13.
9
A continuous epistasis model for predicting growth rate given combinatorial variation in gene expression and environment.
Cell Syst. 2024 Feb 21;15(2):134-148.e7. doi: 10.1016/j.cels.2024.01.003. Epub 2024 Feb 9.
10
Epistatic interactions among metabolic genes depend upon environmental conditions.
Mol Biosyst. 2014 Oct;10(10):2578-89. doi: 10.1039/c4mb00181h.

引用本文的文献

本文引用的文献

1
Global Genetic Networks and the Genotype-to-Phenotype Relationship.
Cell. 2019 Mar 21;177(1):85-100. doi: 10.1016/j.cell.2019.01.033.
2
Mapping the Genetic Landscape of Human Cells.
Cell. 2018 Aug 9;174(4):953-967.e22. doi: 10.1016/j.cell.2018.06.010. Epub 2018 Jul 19.
3
Systematic analysis of complex genetic interactions.
Science. 2018 Apr 20;360(6386). doi: 10.1126/science.aao1729.
4
Dual gene activation and knockout screen reveals directional dependencies in genetic networks.
Nat Biotechnol. 2018 Feb;36(2):170-178. doi: 10.1038/nbt.4062. Epub 2018 Jan 15.
5
Widespread Rewiring of Genetic Networks upon Cancer Signaling Pathway Activation.
Cell Syst. 2018 Jan 24;6(1):52-64.e4. doi: 10.1016/j.cels.2017.10.015. Epub 2017 Nov 30.
6
A CRISPR-Cas9-based gene drive platform for genetic interaction analysis in Candida albicans.
Nat Microbiol. 2018 Jan;3(1):73-82. doi: 10.1038/s41564-017-0043-0. Epub 2017 Oct 23.
7
Features of the Chaperone Cellular Network Revealed through Systematic Interaction Mapping.
Cell Rep. 2017 Sep 12;20(11):2735-2748. doi: 10.1016/j.celrep.2017.08.074.
8
Genetic interaction mapping in mammalian cells using CRISPR interference.
Nat Methods. 2017 Jun;14(6):577-580. doi: 10.1038/nmeth.4286. Epub 2017 May 8.
9
Active Interaction Mapping Reveals the Hierarchical Organization of Autophagy.
Mol Cell. 2017 Feb 16;65(4):761-774.e5. doi: 10.1016/j.molcel.2016.12.024. Epub 2017 Jan 26.
10
The Genome-Wide Interaction Network of Nutrient Stress Genes in Escherichia coli.
mBio. 2016 Nov 22;7(6):e01714-16. doi: 10.1128/mBio.01714-16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验