Suppr超能文献

从单细胞 RNA 测序数据中鉴定单核苷酸变异。

SNV identification from single-cell RNA sequencing data.

机构信息

Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan, USA.

Department of Medicine, University of Chicago, Chicago, Illinois, USA.

出版信息

Hum Mol Genet. 2019 Nov 1;28(21):3569-3583. doi: 10.1093/hmg/ddz207.

Abstract

Integrating single-cell RNA sequencing (scRNA-seq) data with genotypes obtained from DNA sequencing studies facilitates the detection of functional genetic variants underlying cell type-specific gene expression variation. Unfortunately, most existing scRNA-seq studies do not come with DNA sequencing data; thus, being able to call single nucleotide variants (SNVs) from scRNA-seq data alone can provide crucial and complementary information, detection of functional SNVs, maximizing the potential of existing scRNA-seq studies. Here, we perform extensive analyses to evaluate the utility of two SNV calling pipelines (GATK and Monovar), originally designed for SNV calling in either bulk or single-cell DNA sequencing data. In both pipelines, we examined various parameter settings to determine the accuracy of the final SNV call set and provide practical recommendations for applied analysts. We found that combining all reads from the single cells and following GATK Best Practices resulted in the highest number of SNVs identified with a high concordance. In individual single cells, Monovar resulted in better quality SNVs even though none of the pipelines analyzed is capable of calling a reasonable number of SNVs with high accuracy. In addition, we found that SNV calling quality varies across different functional genomic regions. Our results open doors for novel ways to leverage the use of scRNA-seq for the future investigation of SNV function.

摘要

将单细胞 RNA 测序 (scRNA-seq) 数据与从 DNA 测序研究中获得的基因型相结合,有助于检测导致细胞类型特异性基因表达变异的功能遗传变异。不幸的是,大多数现有的 scRNA-seq 研究都没有 DNA 测序数据;因此,能够仅从 scRNA-seq 数据中调用单核苷酸变异 (SNV) 可以提供关键且互补的信息,即检测功能 SNV,从而最大限度地发挥现有 scRNA-seq 研究的潜力。在这里,我们进行了广泛的分析,以评估两种 SNV 调用管道 (GATK 和 Monovar) 的实用性,这两种管道最初是为批量或单细胞 DNA 测序数据中的 SNV 调用而设计的。在这两个管道中,我们检查了各种参数设置,以确定最终 SNV 调用集的准确性,并为应用分析师提供实用建议。我们发现,将所有来自单个细胞的读取组合起来,并遵循 GATK 最佳实践,可获得最多数量的 SNV,且具有很高的一致性。在单个单细胞中,即使分析的管道都无法以高精度调用大量合理的 SNV,Monovar 也能产生质量更好的 SNV。此外,我们发现 SNV 调用质量在不同的功能基因组区域之间存在差异。我们的结果为利用 scRNA-seq 进行未来的 SNV 功能研究开辟了新的途径。

相似文献

1
SNV identification from single-cell RNA sequencing data.
Hum Mol Genet. 2019 Nov 1;28(21):3569-3583. doi: 10.1093/hmg/ddz207.
2
Improved SNV Discovery in Barcode-Stratified scRNA-seq Alignments.
Genes (Basel). 2021 Sep 30;12(10):1558. doi: 10.3390/genes12101558.
5
SCReadCounts: estimation of cell-level SNVs expression from scRNA-seq data.
BMC Genomics. 2021 Sep 22;22(1):689. doi: 10.1186/s12864-021-07974-8.
6
scReQTL: an approach to correlate SNVs to gene expression from individual scRNA-seq datasets.
BMC Genomics. 2021 Jan 8;22(1):40. doi: 10.1186/s12864-020-07334-y.
7
Identifying cancer cells from calling single-nucleotide variants in scRNA-seq data.
Bioinformatics. 2024 Sep 2;40(9). doi: 10.1093/bioinformatics/btae512.
8
Testing for Phylogenetic Signal in Single-Cell RNA-Seq Data.
J Comput Biol. 2023 Apr;30(4):518-537. doi: 10.1089/cmb.2022.0357. Epub 2022 Dec 6.
10
Red panda: a novel method for detecting variants in single-cell RNA sequencing.
BMC Genomics. 2020 Dec 29;21(Suppl 11):830. doi: 10.1186/s12864-020-07224-3.

引用本文的文献

2
Evaluating genetic-ancestry inference from single-cell RNA-seq data.
bioRxiv. 2025 Mar 28:2025.03.25.645175. doi: 10.1101/2025.03.25.645175.
3
Computational methods for allele-specific expression in single cells.
Trends Genet. 2024 Nov;40(11):939-949. doi: 10.1016/j.tig.2024.07.003. Epub 2024 Aug 10.
4
CanCellVar: A database for single-cell variants map in human cancer.
Am J Hum Genet. 2024 Jul 11;111(7):1420-1430. doi: 10.1016/j.ajhg.2024.05.014. Epub 2024 Jun 4.
5
Phertilizer: Growing a clonal tree from ultra-low coverage single-cell DNA sequencing of tumors.
PLoS Comput Biol. 2023 Oct 11;19(10):e1011544. doi: 10.1371/journal.pcbi.1011544. eCollection 2023 Oct.
6
Enhancing genomic mutation data storage optimization based on the compression of asymmetry of sparsity.
Front Genet. 2023 Jun 1;14:1213907. doi: 10.3389/fgene.2023.1213907. eCollection 2023.
7
Complex Analysis of Single-Cell RNA Sequencing Data.
Biochemistry (Mosc). 2023 Feb;88(2):231-252. doi: 10.1134/S0006297923020074.
8
SCExecute: custom cell barcode-stratified analyses of scRNA-seq data.
Bioinformatics. 2023 Jan 1;39(1). doi: 10.1093/bioinformatics/btac768.
10
scAllele: A versatile tool for the detection and analysis of variants in scRNA-seq.
Sci Adv. 2022 Sep 2;8(35):eabn6398. doi: 10.1126/sciadv.abn6398.

本文引用的文献

2
Multiplexed droplet single-cell RNA-sequencing using natural genetic variation.
Nat Biotechnol. 2018 Jan;36(1):89-94. doi: 10.1038/nbt.4042. Epub 2017 Dec 11.
3
Batch effects and the effective design of single-cell gene expression studies.
Sci Rep. 2017 Jan 3;7:39921. doi: 10.1038/srep39921.
4
Monovar: single-nucleotide variant detection in single cells.
Nat Methods. 2016 Jun;13(6):505-7. doi: 10.1038/nmeth.3835. Epub 2016 Apr 18.
5
Single-cell genome sequencing: current state of the science.
Nat Rev Genet. 2016 Mar;17(3):175-88. doi: 10.1038/nrg.2015.16. Epub 2016 Jan 25.
7
A global reference for human genetic variation.
Nature. 2015 Oct 1;526(7571):68-74. doi: 10.1038/nature15393.
8
Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR.
Nat Protoc. 2015 Oct;10(10):1556-66. doi: 10.1038/nprot.2015.105. Epub 2015 Sep 17.
9
Human genomics. The human transcriptome across tissues and individuals.
Science. 2015 May 8;348(6235):660-5. doi: 10.1126/science.aaa0355.
10
The genetic architecture of gene expression levels in wild baboons.
Elife. 2015 Feb 25;4:e04729. doi: 10.7554/eLife.04729.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验