Suppr超能文献

利用单细胞 RNA-seq 中的单核苷酸变异来鉴定亚群和基因型-表型关联。

Using single nucleotide variations in single-cell RNA-seq to identify subpopulations and genotype-phenotype linkage.

机构信息

Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA.

Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.

出版信息

Nat Commun. 2018 Nov 20;9(1):4892. doi: 10.1038/s41467-018-07170-5.

Abstract

Despite its popularity, characterization of subpopulations with transcript abundance is subject to a significant amount of noise. We propose to use effective and expressed nucleotide variations (eeSNVs) from scRNA-seq as alternative features for tumor subpopulation identification. We develop a linear modeling framework, SSrGE, to link eeSNVs associated with gene expression. In all the datasets tested, eeSNVs achieve better accuracies than gene expression for identifying subpopulations. Previously validated cancer-relevant genes are also highly ranked, confirming the significance of the method. Moreover, SSrGE is capable of analyzing coupled DNA-seq and RNA-seq data from the same single cells, demonstrating its value in integrating multi-omics single cell techniques. In summary, SNV features from scRNA-seq data have merits for both subpopulation identification and linkage of genotype-phenotype relationship.

摘要

尽管其应用广泛,但基于转录本丰度对亚群进行特征描述存在大量噪声。我们建议使用 scRNA-seq 中的有效表达核苷酸变异 (eeSNVs) 作为肿瘤亚群鉴定的替代特征。我们开发了一个线性建模框架 SSrGE,将与基因表达相关的 eeSNVs 联系起来。在所有测试的数据集上,eeSNVs 在识别亚群方面的准确性都优于基因表达。先前验证的癌症相关基因也排名很高,这证实了该方法的重要性。此外,SSrGE 能够分析来自同一单细胞的 DNA-seq 和 RNA-seq 数据,这表明它在整合多组学单细胞技术方面具有价值。总之,scRNA-seq 数据中的 SNV 特征在亚群识别和基因型-表型关系的关联方面具有优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验