Suppr超能文献

释放控制疾病的生物的进化生态学

Evolutionary Ecology of Releases for Disease Control.

机构信息

Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3052, Australia.

Department of Evolution and Ecology, University of California, Davis, California 95616, USA; email:

出版信息

Annu Rev Genet. 2019 Dec 3;53:93-116. doi: 10.1146/annurev-genet-112618-043609. Epub 2019 Sep 10.

Abstract

is an endosymbiotic that can suppress insect-borne diseases through decreasing host virus transmission (population replacement) or through decreasing host population density (population suppression). We contrast natural infections in insect populations with transinfections in mosquitoes to gain insights into factors potentially affecting the long-term success of releases. Natural infections can spread rapidly, whereas the slow spread of transinfections is governed by deleterious effects on host fitness and demographic factors. Cytoplasmic incompatibility (CI) generated by is central to both population replacement and suppression programs, but CI in nature can be variable and evolve, as can fitness effects and virus blocking. spread is also influenced by environmental factors that decrease titer and reduce maternal transmission frequency. More information is needed on the interactions between and host nuclear/mitochondrial genomes, the interaction between invasion success and local ecological factors, and the long-term stability of -mediated virus blocking.

摘要

是一种内共生体,可以通过降低宿主病毒传播(种群替换)或降低宿主种群密度(种群抑制)来抑制昆虫传播的疾病。我们将昆虫种群中的自然感染与蚊子中的转感染进行对比,以深入了解可能影响释放长期成功的因素。自然感染可以迅速传播,而转感染的缓慢传播则受到对宿主适应性和人口统计因素的有害影响的控制。由产生的细胞质不相容性(CI)是种群替换和抑制计划的核心,但自然界中的 CI 可能是可变的,并会进化,而的适应性效应和病毒阻断也会进化。的传播还受到降低病毒效价和减少母体传播频率的环境因素的影响。需要更多关于与宿主核/线粒体基因组之间的相互作用、入侵成功与当地生态因素之间的相互作用以及介导的病毒阻断的长期稳定性的信息。

相似文献

1
Evolutionary Ecology of Releases for Disease Control.
Annu Rev Genet. 2019 Dec 3;53:93-116. doi: 10.1146/annurev-genet-112618-043609. Epub 2019 Sep 10.
2
Persistent deleterious effects of a deleterious Wolbachia infection.
PLoS Negl Trop Dis. 2020 Apr 3;14(4):e0008204. doi: 10.1371/journal.pntd.0008204. eCollection 2020 Apr.
3
Deploying dengue-suppressing Wolbachia : Robust models predict slow but effective spatial spread in Aedes aegypti.
Theor Popul Biol. 2017 Jun;115:45-60. doi: 10.1016/j.tpb.2017.03.003. Epub 2017 Apr 12.
4
Constraints on the use of lifespan-shortening Wolbachia to control dengue fever.
J Theor Biol. 2012 Mar 21;297:26-32. doi: 10.1016/j.jtbi.2011.12.006. Epub 2011 Dec 16.
5
Models to assess how best to replace dengue virus vectors with Wolbachia-infected mosquito populations.
Math Biosci. 2015 Nov;269:164-77. doi: 10.1016/j.mbs.2015.09.004. Epub 2015 Sep 25.
6
Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes.
PLoS Pathog. 2017 Dec 7;13(12):e1006751. doi: 10.1371/journal.ppat.1006751. eCollection 2017 Dec.
7
Wolbachia Reduces the Transmission Potential of Dengue-Infected Aedes aegypti.
PLoS Negl Trop Dis. 2015 Jun 26;9(6):e0003894. doi: 10.1371/journal.pntd.0003894. eCollection 2015.
8
Modeling the Effects of Augmentation Strategies on the Control of Dengue Fever With an Impulsive Differential Equation.
Bull Math Biol. 2016 Oct;78(10):1968-2010. doi: 10.1007/s11538-016-0208-7. Epub 2016 Oct 12.
9
Mission Accomplished? We Need a Guide to the 'Post Release' World of Wolbachia for Aedes-borne Disease Control.
Trends Parasitol. 2018 Mar;34(3):217-226. doi: 10.1016/j.pt.2017.11.011. Epub 2018 Jan 23.

引用本文的文献

1
Stochastic Fluctuations of the Facultative Endosymbiont due to Finite Host Population Size.
Ecol Evol. 2025 Aug 17;15(8):e71989. doi: 10.1002/ece3.71989. eCollection 2025 Aug.
3
Reciprocal Host- Interactions Shape Infection Persistence Upon Loss of Cytoplasmic Incompatibility in Haplodiploids.
Evol Appl. 2025 Jul 23;18(7):e70138. doi: 10.1111/eva.70138. eCollection 2025 Jul.
5
Changes in the frequency of facultative endosymbionts in insect populations: overview and applications.
Entomol Gen. 2025 May 22;45(2):351-368. doi: 10.1127/entomologia/2025/3052. Epub 2025 May 7.
7
Infection Alters the Microbiota of the Invasive Leaf-Miner (Diptera: Agromyzidae).
Microorganisms. 2025 Jan 30;13(2):302. doi: 10.3390/microorganisms13020302.
8
An epidemiological model of SIR in a nanotechnological innovation environment.
Heliyon. 2025 Jan 28;11(3):e42309. doi: 10.1016/j.heliyon.2025.e42309. eCollection 2025 Feb 15.

本文引用的文献

1
Wolbachia, Cardinium and climate: an analysis of global data.
Biol Lett. 2019 Aug 30;15(8):20190273. doi: 10.1098/rsbl.2019.0273. Epub 2019 Aug 21.
2
Incompatible and sterile insect techniques combined eliminate mosquitoes.
Nature. 2019 Aug;572(7767):56-61. doi: 10.1038/s41586-019-1407-9. Epub 2019 Jul 17.
3
Acquisition by -Clade Hosts and Transfer of Incompatibility Loci Between Distantly Related .
Genetics. 2019 Aug;212(4):1399-1419. doi: 10.1534/genetics.119.302349. Epub 2019 Jun 21.
4
occurs in populations in New Mexico and Florida, USA.
Ecol Evol. 2019 Apr 26;9(10):6148-6156. doi: 10.1002/ece3.5198. eCollection 2019 May.
5
A genomic approach to inferring kinship reveals limited intergenerational dispersal in the yellow fever mosquito.
Mol Ecol Resour. 2019 Sep;19(5):1254-1264. doi: 10.1111/1755-0998.13043. Epub 2019 Jun 12.
7
Loss of cytoplasmic incompatibility in Wolbachia-infected Aedes aegypti under field conditions.
PLoS Negl Trop Dis. 2019 Apr 19;13(4):e0007357. doi: 10.1371/journal.pntd.0007357. eCollection 2019 Apr.
10
A comprehensive assessment of inbreeding and laboratory adaptation in mosquitoes.
Evol Appl. 2018 Dec 17;12(3):572-586. doi: 10.1111/eva.12740. eCollection 2019 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验