Institut Charles Gerhardt, UMR 5253-CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 240 Avenue Emile Jeanbrau, 34296 Montpellier, France.
SAS Nouvelle Sogatra, 784 Chemin de la caladette, 30350 Lezan, France.
Molecules. 2019 Sep 9;24(18):3285. doi: 10.3390/molecules24183285.
Most of the current amine hardeners are petro-sourced and only a few studies have focused on the research of bio-based substitutes. Hence, in an eco-friendly context, our team proposed the design of bio-based amine monomers with aromatic structures. This work described the use of the reductive amination with imine intermediate in order to obtain bio-based pluri-functional amines exhibiting low viscosity. The effect of the nature of initial aldehyde reactant on the hardener properties was studied, as well as the reaction conditions. Then, these pluri-functional amines were added to petro-sourced (diglycidyl ether of bisphenol A, DGEBA) or bio-based (diglycidyl ether of vanillin alcohol, DGEVA) epoxy monomers to form thermosets by step growth polymerization. Due to their low viscosity, the epoxy-amine mixtures were easily homogenized and cured more rapidly compared to the use of more viscous hardeners (<0.6 Pa s at 22 °C). After curing, the thermo-mechanical properties of the epoxy thermosets were determined and compared. The isophthalatetetramine (IPTA) hardener, with a higher number of amine active H, led to thermosets with higher thermo-mechanical properties (glass transition temperatures ( and T) were around 95 °C for DGEBA-based thermosets against 60 °C for DGEVA-based thermosets) than materials from benzylamine (BDA) or furfurylamine (FDA) that contained less active hydrogens ( and T around 77 °C for DGEBA-based thermosets and and T around 45 °C for DGEVA-based thermosets). By comparing to industrial hardener references, IPTA possesses six active hydrogens which obtain high cross-linked systems, similar to industrial references, and longer molecular length due to the presence of two alkyl chains, leading respectively to high mechanical strength with lower .
目前大多数胺类固化剂都来源于石油,只有少数研究集中在生物基替代品的研究上。因此,在环保的背景下,我们的团队提出了设计具有芳香结构的生物基胺单体。这项工作描述了使用带有亚胺中间体的还原胺化反应来获得具有低粘度的生物基多官能胺。研究了初始醛反应物的性质对固化剂性能的影响,以及反应条件。然后,将这些多官能胺添加到石油基(双酚 A 的二缩水甘油醚,DGEBA)或生物基(香草醇的二缩水甘油醚,DGEVA)环氧树脂单体中,通过逐步聚合形成热固性树脂。由于其低粘度,与使用更粘稠的固化剂相比,环氧树脂-胺混合物更容易均匀化并且更快地固化(在 22°C 时,<0.6 Pa s)。固化后,测定了环氧树脂热固性树脂的热机械性能并进行了比较。异佛尔酮四胺(IPTA)固化剂具有更多的胺活性 H,导致具有更高热机械性能的热固性树脂(基于 DGEBA 的热固性树脂的玻璃化转变温度( 和 T)约为 95°C,而基于 DGEVA 的热固性树脂的玻璃化转变温度( 和 T)约为 60°C),而含有较少活性氢的苯甲胺(BDA)或糠胺(FDA)材料的玻璃化转变温度( 和 T)约为 77°C(基于 DGEBA 的热固性树脂)和 45°C(基于 DGEVA 的热固性树脂)。与工业固化剂参考物相比,IPTA 具有六个活性氢,可获得类似于工业参考物的高交联体系,并且由于存在两个烷基链,其分子长度更长,分别导致低 的高机械强度。