Suppr超能文献

相似文献

1
Chromatin conformation remains stable upon extensive transcriptional changes driven by heat shock.
Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19431-19439. doi: 10.1073/pnas.1901244116. Epub 2019 Sep 10.
2
Genetic and epigenetic determinants establish a continuum of Hsf1 occupancy and activity across the yeast genome.
Mol Biol Cell. 2018 Dec 15;29(26):3168-3182. doi: 10.1091/mbc.E18-06-0353. Epub 2018 Oct 17.
3
The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response.
Mol Biol Cell. 2004 Mar;15(3):1254-61. doi: 10.1091/mbc.e03-10-0738. Epub 2003 Dec 10.
7
8
Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):E3388-97. doi: 10.1073/pnas.1305275110. Epub 2013 Aug 19.
10

引用本文的文献

2
HSF1 Activation Mechanisms, Disease Roles, and Small Molecule Therapeutics.
Int J Biol Sci. 2025 Apr 28;21(8):3351-3378. doi: 10.7150/ijbs.110447. eCollection 2025.
3
A guide to heat shock factors as multifunctional transcriptional regulators.
FEBS J. 2025 Aug;292(16):4133-4155. doi: 10.1111/febs.70139. Epub 2025 Jun 2.
4
Revisiting models of enhancer-promoter communication in gene regulation.
Genome Res. 2025 Jun 2;35(6):1277-1286. doi: 10.1101/gr.278389.123.
5
Heat shock induces alternative polyadenylation through dynamic DNA methylation and chromatin looping.
Cell Stress Chaperones. 2025 May 22;30(4):100084. doi: 10.1016/j.cstres.2025.100084.
9
Uncovering topologically associating domains from three-dimensional genome maps with TADGATE.
Nucleic Acids Res. 2025 Feb 8;53(4). doi: 10.1093/nar/gkae1267.
10
Beyond the heat shock pathway: Heat stress responses in Drosophila development.
Dev Biol. 2025 Feb;518:53-60. doi: 10.1016/j.ydbio.2024.11.003. Epub 2024 Nov 16.

本文引用的文献

1
Stress-induced transcriptional memory accelerates promoter-proximal pause release and decelerates termination over mitotic divisions.
Mol Cell. 2021 Apr 15;81(8):1715-1731.e6. doi: 10.1016/j.molcel.2021.03.007. Epub 2021 Mar 29.
2
Architectural Proteins and Pluripotency Factors Cooperate to Orchestrate the Transcriptional Response of hESCs to Temperature Stress.
Mol Cell. 2018 Sep 20;71(6):940-955.e7. doi: 10.1016/j.molcel.2018.07.012. Epub 2018 Aug 16.
3
The Energetics and Physiological Impact of Cohesin Extrusion.
Cell. 2018 May 17;173(5):1165-1178.e20. doi: 10.1016/j.cell.2018.03.072. Epub 2018 Apr 26.
4
Molecular mechanisms driving transcriptional stress responses.
Nat Rev Genet. 2018 Jun;19(6):385-397. doi: 10.1038/s41576-018-0001-6.
5
The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription.
Genes Dev. 2018 Jan 1;32(1):42-57. doi: 10.1101/gad.308619.117. Epub 2018 Jan 29.
6
Widespread transcriptional pausing and elongation control at enhancers.
Genes Dev. 2018 Jan 1;32(1):26-41. doi: 10.1101/gad.309351.117. Epub 2018 Jan 29.
7
High-resolution TADs reveal DNA sequences underlying genome organization in flies.
Nat Commun. 2018 Jan 15;9(1):189. doi: 10.1038/s41467-017-02525-w.
8
Cohesin Loss Eliminates All Loop Domains.
Cell. 2017 Oct 5;171(2):305-320.e24. doi: 10.1016/j.cell.2017.09.026.
9
HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient.
Genome Res. 2017 Nov;27(11):1939-1949. doi: 10.1101/gr.220640.117. Epub 2017 Aug 30.
10
Transcriptional response to stress is pre-wired by promoter and enhancer architecture.
Nat Commun. 2017 Aug 15;8(1):255. doi: 10.1038/s41467-017-00151-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验