Peach Robert L, Yaliraki Sophia N, Lefevre David, Barahona Mauricio
1Department of Mathematics, Imperial College London, London, SW7 2AZ UK.
2Imperial College Business School, Imperial College London, London, SW7 2AZ UK.
NPJ Sci Learn. 2019 Sep 3;4:14. doi: 10.1038/s41539-019-0054-0. eCollection 2019.
The widespread adoption of online courses opens opportunities for analysing learner behaviour and optimising web-based learning adapted to observed usage. Here, we introduce a mathematical framework for the analysis of time-series of online learner engagement, which allows the identification of clusters of learners with similar online temporal behaviour directly from the raw data without prescribing a priori subjective reference behaviours. The method uses a dynamic time warping kernel to create a pair-wise similarity between time-series of learner actions, and combines it with an unsupervised multiscale graph clustering algorithm to identify groups of learners with similar temporal behaviour. To showcase our approach, we analyse task completion data from a cohort of learners taking an online post-graduate degree at Imperial Business School. Our analysis reveals clusters of learners with statistically distinct patterns of engagement, from distributed to massed learning, with different levels of regularity, adherence to pre-planned course structure and task completion. The approach also reveals outlier learners with highly sporadic behaviour. A posteriori comparison against student performance shows that, whereas high-performing learners are spread across clusters with diverse temporal engagement, low performers are located significantly in the massed learning cluster, and our unsupervised clustering identifies low performers more accurately than common machine learning classification methods trained on temporal statistics of the data. Finally, we test the applicability of the method by analysing two additional data sets: a different cohort of the same course, and time-series of different format from another university.
在线课程的广泛采用为分析学习者行为和优化基于网络的学习(使其适应观察到的使用情况)提供了机会。在此,我们引入了一个用于分析在线学习者参与度时间序列的数学框架,该框架能够直接从原始数据中识别出具有相似在线时间行为的学习者群体,而无需事先规定主观参考行为。该方法使用动态时间规整核来创建学习者行为时间序列之间的成对相似度,并将其与无监督多尺度图聚类算法相结合,以识别具有相似时间行为的学习者群体。为了展示我们的方法,我们分析了帝国商学院一批攻读在线研究生学位的学习者的任务完成数据。我们的分析揭示了具有统计学上不同参与模式的学习者群体,从分散学习到集中学习,具有不同程度的规律性、对预先计划的课程结构的遵守情况和任务完成情况。该方法还揭示了行为高度零散的异常学习者。与学生成绩的事后比较表明,虽然成绩优异的学习者分布在具有不同时间参与度的群体中,但成绩较差的学习者明显集中在集中学习群体中,并且我们的无监督聚类比基于数据时间统计训练的常见机器学习分类方法更准确地识别出成绩较差的学习者。最后,我们通过分析另外两个数据集来测试该方法的适用性:同一课程的不同群体,以及来自另一所大学的不同格式的时间序列。