Marmolejo-Ramos Fernando, Tejo Mauricio, Brabec Marek, Kuzilek Jakub, Joksimovic Srecko, Kovanovic Vitomir, González Jorge, Kneib Thomas, Bühlmann Peter, Kook Lucas, Briseño-Sánchez Guillermo, Ospina Raydonal
Centre for Change and Complexity in Learning University of South Australia Adelaide Australia.
Instituto de Estadística Universidad de Valparaíso Valparaíso Chile.
Wiley Interdiscip Rev Data Min Knowl Discov. 2023 Jan-Feb;13(1):e1479. doi: 10.1002/widm.1479. Epub 2022 Oct 21.
The advent of technological developments is allowing to gather large amounts of data in several research fields. Learning analytics (LA)/educational data mining has access to big observational unstructured data captured from educational settings and relies mostly on unsupervised machine learning (ML) algorithms to make sense of such type of data. Generalized additive models for location, scale, and shape (GAMLSS) are a supervised statistical learning framework that allows modeling all the parameters of the distribution of the response variable with respect to the explanatory variables. This article overviews the power and flexibility of GAMLSS in relation to some ML techniques. Also, GAMLSS' capability to be tailored toward causality via causal regularization is briefly commented. This overview is illustrated via a data set from the field of LA. This article is categorized under:Application Areas > Education and LearningAlgorithmic Development > StatisticsTechnologies > Machine Learning.
技术发展的出现使得在多个研究领域能够收集大量数据。学习分析(LA)/教育数据挖掘可以获取从教育环境中捕获的大量观测性非结构化数据,并且主要依靠无监督机器学习(ML)算法来理解此类数据。位置、尺度和形状的广义相加模型(GAMLSS)是一个有监督的统计学习框架,它允许针对解释变量对响应变量分布的所有参数进行建模。本文概述了GAMLSS相对于一些ML技术的强大功能和灵活性。此外,还简要评论了GAMLSS通过因果正则化针对因果关系进行定制的能力。通过来自LA领域的数据集对这一概述进行说明。本文分类如下:应用领域>教育与学习;算法开发>统计学;技术>机器学习。