Mezenov Yuri A, Krasilin Andrei A, Dzyuba Vladimir P, Nominé Alexandre, Milichko Valentin A
Faculty of Physics and Engineering ITMO University St. Petersburg 197101 Russia.
Ioffe Institute St. Petersburg 194021 Russia.
Adv Sci (Weinh). 2019 Jul 18;6(17):1900506. doi: 10.1002/advs.201900506. eCollection 2019 Sep 4.
Owing to the synergistic combination of a hybrid organic-inorganic nature and a chemically active porous structure, metal-organic frameworks have emerged as a new class of crystalline materials. The current trend in the chemical industry is to utilize such crystals as flexible hosting elements for applications as diverse as gas and energy storage, filtration, catalysis, and sensing. From the physical point of view, metal-organic frameworks are considered molecular crystals with hierarchical structures providing the structure-related physical properties crucial for future applications of energy transfer, data processing and storage, high-energy physics, and light manipulation. Here, the perspectives of metal-organic frameworks as a new family of functional materials in modern physics are discussed: from porous metals and superconductors, topological insulators, and classical and quantum memory elements, to optical superstructures, materials for particle physics, and even molecular scale mechanical metamaterials. Based on complementary properties of crystallinity, softness, organic-inorganic nature, and complex hierarchy, a description of how such artificial materials have extended their impact on applied physics to become the mainstream in material science is offered.
由于有机-无机杂化性质与化学活性多孔结构的协同结合,金属有机框架已成为一类新型晶体材料。化学工业当前的趋势是将此类晶体用作灵活的主体元素,用于气体和能量存储、过滤、催化及传感等多种应用。从物理角度来看,金属有机框架被视为具有分级结构的分子晶体,这些结构提供了与结构相关的物理性质,对能量转移、数据处理与存储、高能物理及光操控等未来应用至关重要。在此,将讨论金属有机框架作为现代物理学中一类新型功能材料的前景:从多孔金属、超导体、拓扑绝缘体、经典和量子存储元件,到光学超结构、粒子物理材料,甚至分子尺度的机械超材料。基于结晶性、柔软性、有机-无机性质及复杂分级结构的互补特性,本文描述了此类人工材料如何将其对应用物理学的影响扩展至成为材料科学的主流。