文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人体外骨骼控制仿真、动力学和运动学建模以及参数提取。

Human-exoskeleton control simulation, kinetic and kinematic modeling and parameters extraction.

作者信息

Khamar Maryam, Edrisi Mehdi, Zahiri Mohsen

机构信息

Electrical Dept., Faculty of Engineering, University of Isfahan, Isfahan, Iran.

出版信息

MethodsX. 2019 Aug 23;6:1838-1846. doi: 10.1016/j.mex.2019.08.014. eCollection 2019.


DOI:10.1016/j.mex.2019.08.014
PMID:31508321
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6726754/
Abstract

Exoskeletons are new robotic systems that are in close contact with the human body. Thus, their performances are influenced by many factors, including the selection of its structure, actuators, measurement devices, parameters, and mechanism of coupling to the human body. The latter offers numerous challenges to its design, evaluation and modification, including analyzing the effectiveness of the exoskeleton, finding the optimal force for actuators and, discovering the effect of changes in design parameters on human muscle behavior, which are very difficult to measure. Therefore, numerical simulations play an important role in solving these challenges and have the potential to improve treatment strategies and medical decision-making. In this study, a simulation-based method is presented for the designing and analysis of the parameters of an exoskeleton and its wearer's kinetics and kinematics. Model-based design software, including OpenSim and Inventor, and mathematical software, such as MATLAB, are integrated. This method can assist in the modification of exoskeleton devices and allow physiologists, neuroscientists, and physical therapists to generate new solutions for rehabilitation programs using exoskeletons. •Using the movements parameters of each individual subject in her/his exoskeleton design.•Combining the power of OpenSim body movement and the ability of Matlab in mathematical calculations.•Considering the effect of exoskeleton parameters on each muscle-skeleton movement.

摘要

外骨骼是与人体密切接触的新型机器人系统。因此,它们的性能受到许多因素的影响,包括其结构、致动器、测量装置、参数以及与人体的耦合机制的选择。后者对其设计、评估和修改提出了诸多挑战,包括分析外骨骼的有效性、找到致动器的最佳力以及发现设计参数变化对人体肌肉行为的影响,而这些都很难测量。因此,数值模拟在解决这些挑战方面发挥着重要作用,并且有可能改善治疗策略和医疗决策。在本研究中,提出了一种基于模拟的方法,用于设计和分析外骨骼及其穿戴者的动力学和运动学参数。集成了基于模型的设计软件,包括OpenSim和Inventor,以及数学软件,如MATLAB。这种方法可以协助对外骨骼设备进行修改,并使生理学家、神经科学家和物理治疗师能够为使用外骨骼的康复计划生成新的解决方案。 •在其外骨骼设计中使用每个个体受试者的运动参数。 •结合OpenSim身体运动的能力和Matlab在数学计算方面的能力。 •考虑外骨骼参数对每个肌肉骨骼运动的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/4d03b65cd592/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/02a8e1daccca/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/6c707e3138ce/fx2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/3b3ccfa14874/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/ef1227191f8d/fx3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/a639cb2aa21c/fx4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/b142a485407f/fx5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/77b3acde68d8/fx6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/3f688c72bf5c/fx7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/c12d54186411/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/30196393b6a1/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/4d03b65cd592/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/02a8e1daccca/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/6c707e3138ce/fx2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/3b3ccfa14874/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/ef1227191f8d/fx3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/a639cb2aa21c/fx4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/b142a485407f/fx5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/77b3acde68d8/fx6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/3f688c72bf5c/fx7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/c12d54186411/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/30196393b6a1/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183d/6726754/4d03b65cd592/gr4.jpg

相似文献

[1]
Human-exoskeleton control simulation, kinetic and kinematic modeling and parameters extraction.

MethodsX. 2019-8-23

[2]
A platform for dynamic simulation and control of movement based on OpenSim and MATLAB.

J Biomech. 2012-3-30

[3]
Analysis of movement of an elbow joint with a wearable robotic exoskeleton Using OpenSim software.

Annu Int Conf IEEE Eng Med Biol Soc. 2022-7

[4]
Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters.

Sensors (Basel). 2019-10-15

[5]
Functional Evaluation of a Force Sensor-Controlled Upper-Limb Power-Assisted Exoskeleton with High Backdrivability.

Sensors (Basel). 2020-11-9

[6]
A kinematic model of a humanoid lower limb exoskeleton with pneumatic actuators.

Acta Bioeng Biomech. 2022

[7]
Methodology for Selecting the Appropriate Electric Motor for Robotic Modular Systems for Lower Extremities.

Healthcare (Basel). 2022-10-17

[8]
Musculoskeletal modeling and humanoid control of robots based on human gait data.

PeerJ Comput Sci. 2021-8-9

[9]
Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.

J Neuroeng Rehabil. 2017-6-12

[10]
Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control.

Eur J Phys Rehabil Med. 2018-8-27

引用本文的文献

[1]
Biomechanical models in the lower-limb exoskeletons development: a review.

J Neuroeng Rehabil. 2025-1-24

[2]
Exoskeletons: A challenge for development.

Wearable Technol. 2023-1-5

[3]
Simulation of a control method for active kinesiotherapy with an upper extremity rehabilitation exoskeleton without force sensor.

J Neuroeng Rehabil. 2024-2-11

[4]
Uncertainty-aware automated assessment of the arm impedance with upper-limb exoskeletons.

Front Neurorobot. 2023-8-24

[5]
Comparison of the dynamics of exoskeletal-assisted and unassisted locomotion in an FDA-approved lower extremity device: Controlled experiments and development of a subject-specific virtual simulator.

PLoS One. 2023

[6]
A Computational Gait Model With a Below-Knee Amputation and a Semi-Active Variable-Stiffness Foot Prosthesis.

J Biomech Eng. 2021-12-1

本文引用的文献

[1]
A platform for dynamic simulation and control of movement based on OpenSim and MATLAB.

J Biomech. 2012-3-30

[2]
OpenSim: open-source software to create and analyze dynamic simulations of movement.

IEEE Trans Biomed Eng. 2007-11

[3]
Generating dynamic simulations of movement using computed muscle control.

J Biomech. 2003-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索