一种带有膝下截肢和半主动变刚度假肢的计算步态模型。
A Computational Gait Model With a Below-Knee Amputation and a Semi-Active Variable-Stiffness Foot Prosthesis.
机构信息
Department of Human Physiology, University of Oregon, 181 Esslinger Hall, 1525 University St., Eugene, OR 97403.
Department of Mechanical Engineering, University of Wisconsin-Madison, Room 3039, Mechanical Engineering Building 1513 University Ave., Madison, WI 53706-1539.
出版信息
J Biomech Eng. 2021 Dec 1;143(12). doi: 10.1115/1.4052108.
INTRODUCTION
Simulations based on computational musculoskeletal models are powerful tools for evaluating the effects of potential biomechanical interventions, such as implementing a novel prosthesis. However, the utility of simulations to evaluate the effects of varied prosthesis design parameters on gait mechanics has not been fully realized due to the lack of a readily-available limb loss-specific gait model and methods for efficiently modeling the energy storage and return dynamics of passive foot prostheses. The purpose of this study was to develop and validate a forward simulation-capable gait model with lower-limb loss and a semi-active variable-stiffness foot (VSF) prosthesis.
METHODS
A seven-segment 28-DoF gait model was developed and forward kinematics simulations, in which experimentally observed joint kinematics were applied and the resulting contact forces under the prosthesis evolved accordingly, were computed for four subjects with unilateral below-knee amputation walking with a VSF.
RESULTS
Model-predicted resultant ground reaction force (GRFR) matched well under trial-specific optimized parameter conditions (mean R2: 0.97, RMSE: 7.7% body weight (BW)) and unoptimized (subject-specific, but not trial-specific) parameter conditions (mean R2: 0.93, RMSE: 12% BW). Simulated anterior-posterior center of pressure demonstrated a mean R2 = 0.64 and RMSE = 14% foot length. Simulated kinematics remained consistent with input data (0.23 deg RMSE, R2 > 0.99) for all conditions.
CONCLUSIONS
These methods may be useful for simulating gait among individuals with lower-limb loss and predicting GRFR arising from gait with novel VSF prostheses. Such data are useful to optimize prosthesis design parameters on a user-specific basis.
简介
基于计算肌肉骨骼模型的仿真模拟是评估潜在生物力学干预效果的有力工具,例如实施新型假体。然而,由于缺乏针对肢体缺失的现成步态模型以及有效模拟被动式足部假体储能和回弹动力学的方法,模拟在评估不同假体设计参数对步态力学的影响方面的实用性尚未得到充分体现。本研究的目的是开发和验证一种具有下肢缺失和半主动可变刚度足(VSF)假体的可进行正向仿真的步态模型。
方法
开发了一个七节段 28 自由度步态模型,并针对四名单侧膝下截肢患者进行了正向运动学仿真,其中应用了实验观察到的关节运动学,并相应地演变了假体下的接触力。
结果
在针对特定试验进行优化参数的条件下(平均 R2:0.97,RMSE:7.7%体重(BW))和未优化参数的条件下(基于受试者的但非基于试验的参数条件,平均 R2:0.93,RMSE:12% BW),模型预测的总地面反力(GRFR)与实际吻合良好。模拟的前后中心压力的平均 R2 = 0.64,RMSE = 14%足长。在所有条件下,模拟的运动学与输入数据保持一致(0.23° RMSE,R2>0.99)。
结论
这些方法可能有助于模拟下肢缺失患者的步态,并预测新型 VSF 假体步态产生的 GRFR。这些数据可用于根据用户特定需求优化假体设计参数。