Suppr超能文献

基于磁共振成像的影像组学用于指导高危前列腺癌的术后管理

MRI-Derived Radiomics to Guide Post-operative Management for High-Risk Prostate Cancer.

作者信息

Bourbonne Vincent, Vallières Martin, Lucia François, Doucet Laurent, Visvikis Dimitris, Tissot Valentin, Pradier Olivier, Hatt Mathieu, Schick Ulrike

机构信息

Department of Radiation Oncology, University Hospital, Brest, France.

LaTIM, INSERM, UMR 1101, Brest University, Brest, France.

出版信息

Front Oncol. 2019 Aug 27;9:807. doi: 10.3389/fonc.2019.00807. eCollection 2019.

Abstract

Prostatectomy is one of the main therapeutic options for prostate cancer (PCa). Studies proved the benefit of adjuvant radiotherapy (aRT) on clinical outcomes, with more toxicities when compared to salvage radiotherapy. A better assessment of the likelihood of biochemical recurrence (BCR) would rationalize performing aRT. Our goal was to assess the prognostic value of MRI-derived radiomics on BCR for PCa with high recurrence risk. We retrospectively selected patients with a high recurrence risk (T3a/b or T4 and/or R1 and/or Gleason score>7) and excluded patients with a post-operative PSA > 0.04 ng/mL or a lymph-node involvement. We extracted IBSI-compliant radiomic features (shape and first order intensity metrics, as well as second and third order textural features) from tumors delineated in T2 and ADC sequences. After random division (training and testing sets) and machine learning based feature reduction, a univariate and multivariate Cox regression analysis was performed to identify independent factors. The correlation with BCR was assessed using AUC and prediction of biochemical relapse free survival (bRFS) with a Kaplan-Meier analysis. One hundred seven patients were included. With a median follow-up of 52.0 months, 17 experienced BCR. In the training set, no clinical feature was correlated with BCR. One feature from ADC (SZE) outperformed with an AUC of 0.79 and a HR 17.9 ( = 0.0001). Lower values of SZE are associated with more heterogeneous tumors. In the testing set, this feature remained predictive of BCR and bRFS (AUC 0.76, = 0.0236). One radiomic feature was predictive of BCR and bRFS after prostatectomy helping to guide post-operative management.

摘要

前列腺切除术是前列腺癌(PCa)的主要治疗选择之一。研究证实辅助放疗(aRT)对临床结局有益,但与挽救性放疗相比,毒性更大。更好地评估生化复发(BCR)的可能性将使aRT的实施更加合理。我们的目标是评估MRI衍生的放射组学对高复发风险PCa的BCR的预后价值。我们回顾性选择了高复发风险(T3a/b或T4和/或R1和/或Gleason评分>7)的患者,并排除了术后PSA>0.04 ng/mL或有淋巴结受累的患者。我们从T2和ADC序列中勾勒出的肿瘤中提取符合IBSI标准的放射组学特征(形状和一阶强度指标,以及二阶和三阶纹理特征)。在随机划分(训练集和测试集)并基于机器学习进行特征约简后,进行单变量和多变量Cox回归分析以确定独立因素。使用AUC评估与BCR的相关性,并通过Kaplan-Meier分析预测无生化复发生存期(bRFS)。共纳入107例患者。中位随访52.0个月,17例发生BCR。在训练集中,没有临床特征与BCR相关。ADC的一个特征(SZE)表现出色,AUC为0.79,HR为17.9(P = 0.0001)。SZE值越低,肿瘤异质性越高。在测试集中,该特征仍然可以预测BCR和bRFS(AUC 0.76,P = 0.0236)。一个放射组学特征可预测前列腺切除术后的BCR和bRFS,有助于指导术后管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf3f/6719613/d0c0e3a50a7e/fonc-09-00807-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验