Am J Epidemiol. 2019 Dec 31;188(12):2222-2239. doi: 10.1093/aje/kwz189.
Machine learning is a branch of computer science that has the potential to transform epidemiologic sciences. Amid a growing focus on "Big Data," it offers epidemiologists new tools to tackle problems for which classical methods are not well-suited. In order to critically evaluate the value of integrating machine learning algorithms and existing methods, however, it is essential to address language and technical barriers between the two fields that can make it difficult for epidemiologists to read and assess machine learning studies. Here, we provide an overview of the concepts and terminology used in machine learning literature, which encompasses a diverse set of tools with goals ranging from prediction to classification to clustering. We provide a brief introduction to 5 common machine learning algorithms and 4 ensemble-based approaches. We then summarize epidemiologic applications of machine learning techniques in the published literature. We recommend approaches to incorporate machine learning in epidemiologic research and discuss opportunities and challenges for integrating machine learning and existing epidemiologic research methods.
机器学习是计算机科学的一个分支,有可能改变流行病学科学。在越来越关注“大数据”的背景下,它为流行病学家提供了新的工具来解决经典方法不太适用的问题。然而,为了批判性地评估整合机器学习算法和现有方法的价值,解决两个领域之间的语言和技术障碍至关重要,这些障碍可能使流行病学家难以阅读和评估机器学习研究。在这里,我们提供了机器学习文献中使用的概念和术语的概述,其中包括一系列目标从预测到分类到聚类的不同工具。我们简要介绍了 5 种常见的机器学习算法和 4 种基于集成的方法。然后,我们总结了机器学习技术在已发表文献中的流行病学应用。我们建议将机器学习纳入流行病学研究的方法,并讨论整合机器学习和现有流行病学研究方法的机会和挑战。
Am J Epidemiol. 2019-12-31
Infect Control Hosp Epidemiol. 2018-11-5
Zhonghua Liu Xing Bing Xue Za Zhi. 2021-9-10
Am J Epidemiol. 2023-11-3
BMC Public Health. 2017-11-28
Behav Ther. 2020-9
Value Health. 2019-5
Adv Exp Med Biol. 2018
Lancet Oncol. 2019-5
Can Liver J. 2025-3-12
Diabetes Metab Syndr Obes. 2025-7-7
Diagnostics (Basel). 2025-6-2