文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

什么是机器学习?流行病学人员入门指南。

What is Machine Learning? A Primer for the Epidemiologist.

出版信息

Am J Epidemiol. 2019 Dec 31;188(12):2222-2239. doi: 10.1093/aje/kwz189.


DOI:10.1093/aje/kwz189
PMID:31509183
Abstract

Machine learning is a branch of computer science that has the potential to transform epidemiologic sciences. Amid a growing focus on "Big Data," it offers epidemiologists new tools to tackle problems for which classical methods are not well-suited. In order to critically evaluate the value of integrating machine learning algorithms and existing methods, however, it is essential to address language and technical barriers between the two fields that can make it difficult for epidemiologists to read and assess machine learning studies. Here, we provide an overview of the concepts and terminology used in machine learning literature, which encompasses a diverse set of tools with goals ranging from prediction to classification to clustering. We provide a brief introduction to 5 common machine learning algorithms and 4 ensemble-based approaches. We then summarize epidemiologic applications of machine learning techniques in the published literature. We recommend approaches to incorporate machine learning in epidemiologic research and discuss opportunities and challenges for integrating machine learning and existing epidemiologic research methods.

摘要

机器学习是计算机科学的一个分支,有可能改变流行病学科学。在越来越关注“大数据”的背景下,它为流行病学家提供了新的工具来解决经典方法不太适用的问题。然而,为了批判性地评估整合机器学习算法和现有方法的价值,解决两个领域之间的语言和技术障碍至关重要,这些障碍可能使流行病学家难以阅读和评估机器学习研究。在这里,我们提供了机器学习文献中使用的概念和术语的概述,其中包括一系列目标从预测到分类到聚类的不同工具。我们简要介绍了 5 种常见的机器学习算法和 4 种基于集成的方法。然后,我们总结了机器学习技术在已发表文献中的流行病学应用。我们建议将机器学习纳入流行病学研究的方法,并讨论整合机器学习和现有流行病学研究方法的机会和挑战。

相似文献

[1]
What is Machine Learning? A Primer for the Epidemiologist.

Am J Epidemiol. 2019-12-31

[2]
Introduction to Machine Learning in Digital Healthcare Epidemiology.

Infect Control Hosp Epidemiol. 2018-11-5

[3]
[Machine learning and its epidemiological applications].

Zhonghua Liu Xing Bing Xue Za Zhi. 2021-9-10

[4]
Deep Learning for Epidemiologists: An Introduction to Neural Networks.

Am J Epidemiol. 2023-11-3

[5]
A systematic review of data mining and machine learning for air pollution epidemiology.

BMC Public Health. 2017-11-28

[6]
Supervised Machine Learning: A Brief Primer.

Behav Ther. 2020-9

[7]
Machine learning and big data analytics in bipolar disorder: A position paper from the International Society for Bipolar Disorders Big Data Task Force.

Bipolar Disord. 2019-9-18

[8]
Real-World Evidence, Causal Inference, and Machine Learning.

Value Health. 2019-5

[9]
Big-Data Analysis, Cluster Analysis, and Machine-Learning Approaches.

Adv Exp Med Biol. 2018

[10]
Big data and machine learning algorithms for health-care delivery.

Lancet Oncol. 2019-5

引用本文的文献

[1]
Physical health and cognitive ability factors in predicting retirement adjustment based on machine learning approach: results from the China Health and Retirement Longitudinal Study.

Front Psychol. 2025-8-20

[2]
Machine Learning Models to Predict Risk of Maternal Morbidity and Mortality From Electronic Medical Record Data: Scoping Review.

J Med Internet Res. 2025-8-14

[3]
Complex methods for complex data: key considerations for interpretable and actionable results in exposome research.

Eur J Epidemiol. 2025-8-6

[4]
Feature representation in analysing childhood vaccination defaulter risk predictors: A scoping review of studies in low-resource settings.

PLOS Digit Health. 2025-7-30

[5]
Machine Learning and Artificial Intelligence for Infectious Disease Surveillance, Diagnosis, and Prognosis.

Viruses. 2025-6-23

[6]
Predicting Fatal Drug Poisoning Among People Living with HIV-HCV Co-Infection.

Can Liver J. 2025-3-12

[7]
Application and Analysis of Random Forest and Support Vector Classification in Risk Prediction of Childhood Obesity and Hyperuricemia.

Diabetes Metab Syndr Obes. 2025-7-7

[8]
Methodological conduct and risk of bias in studies on prenatal birthweight prediction models using machine learning techniques: a systematic review.

BMC Pregnancy Childbirth. 2025-7-2

[9]
Leveraging Random Forests explainability for predictive modeling of children's conduct problems: insights from individual and family factors.

Front Public Health. 2025-6-12

[10]
Explainable Machine Learning in the Prediction of Depression.

Diagnostics (Basel). 2025-6-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索