Suppr超能文献

可解释机器学习在抑郁症预测中的应用

Explainable Machine Learning in the Prediction of Depression.

作者信息

Mimikou Christina, Kokkotis Christos, Tsiptsios Dimitrios, Tsamakis Konstantinos, Savvidou Stella, Modig Lillian, Christidi Foteini, Kaltsatou Antonia, Doskas Triantafyllos, Mueller Christoph, Serdari Aspasia, Anagnostopoulos Kostas, Tripsianis Gregory

机构信息

Laboratory of Medical Statistics, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece.

Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece.

出版信息

Diagnostics (Basel). 2025 Jun 2;15(11):1412. doi: 10.3390/diagnostics15111412.

Abstract

Depression constitutes a major public health issue, being one of the leading causes of the burden of disease worldwide. The risk of depression is determined by both genetic and environmental factors. While genetic factors cannot be altered, the identification of potentially reversible environmental factors is crucial in order to try and limit the prevalence of depression. A cross-sectional, questionnaire-based study on a sample from the multicultural region of Thrace in northeast Greece was designed to assess the potential association of depression with several sociodemographic characteristics, lifestyle, and health status. The study employed four machine learning (ML) methods to assess depression: logistic regression (LR), support vector machine (SVM), XGBoost, and neural networks (NNs). These models were compared to identify the best-performing approach. Additionally, a genetic algorithm (GA) was utilized for feature selection and SHAP (SHapley Additive exPlanations) for interpreting the contributions of each employed feature. The XGBoost classifier demonstrated the highest performance on the test dataset to predict depression with excellent accuracy (97.83%), with NNs a close second (accuracy, 97.02%). The XGBoost classifier utilized the 15 most significant risk factors identified by the GA algorithm. Additionally, the SHAP analysis revealed that anxiety, education level, alcohol consumption, and body mass index were the most influential predictors of depression. These findings provide valuable insights for the development of personalized public health interventions and clinical strategies, ultimately promoting improved mental well-being for individuals. Future research should expand datasets to enhance model accuracy, enabling early detection and personalized mental healthcare systems for better intervention.

摘要

抑郁症是一个重大的公共卫生问题,是全球疾病负担的主要原因之一。抑郁症的风险由遗传和环境因素共同决定。虽然遗传因素无法改变,但识别潜在的可逆转环境因素对于试图限制抑郁症的患病率至关重要。一项基于问卷调查的横断面研究,对希腊东北部色雷斯多元文化地区的一个样本进行了设计,旨在评估抑郁症与若干社会人口学特征、生活方式和健康状况之间的潜在关联。该研究采用了四种机器学习(ML)方法来评估抑郁症:逻辑回归(LR)、支持向量机(SVM)、XGBoost和神经网络(NNs)。对这些模型进行了比较,以确定表现最佳的方法。此外,还利用遗传算法(GA)进行特征选择,并利用SHAP(SHapley Additive exPlanations)来解释每个使用特征的贡献。XGBoost分类器在测试数据集上表现出最高的性能,以优异的准确率(97.83%)预测抑郁症,神经网络紧随其后(准确率97.02%)。XGBoost分类器利用了GA算法确定的15个最重要的风险因素。此外,SHAP分析表明,焦虑、教育水平、饮酒和体重指数是抑郁症最具影响力的预测因素。这些发现为制定个性化的公共卫生干预措施和临床策略提供了有价值的见解,最终促进个人心理健康状况的改善。未来的研究应扩大数据集以提高模型准确性,实现早期检测和个性化心理保健系统,以便更好地进行干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5c6/12154222/fcab2a563611/diagnostics-15-01412-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验