Department of Pediatrics, University of Virginia, Charlottesville, VA.
Department of Neurology, University of Virginia, Charlottesville, VA.
Ann Neurol. 2019 Dec;86(6):927-938. doi: 10.1002/ana.25601. Epub 2019 Oct 18.
To identify circuits active during neonatal hypoxic-ischemic (HI) seizures and seizure propagation using electroencephalography (EEG), behavior, and whole-brain neuronal activity mapping.
Mice were exposed to HI on postnatal day 10 using unilateral carotid ligation and global hypoxia. EEG and video were recorded for the duration of the experiment. Using immediate early gene reporter mice, active cells expressing cfos were permanently tagged with reporter protein tdTomato during a 90-minute window. After 1 week, allowing maximal expression of the reporter protein, whole brains were processed, lipid cleared, and imaged with confocal microscopy. Whole-brain reconstruction and analysis of active neurons (colocalized tdTomato/NeuN) were performed.
HI resulted in seizure behaviors that were bilateral or unilateral tonic-clonic and nonconvulsive in this model. Mice exhibited characteristic EEG background patterns such as burst suppression and suppression. Neuronal activity mapping revealed bilateral motor cortex and unilateral, ischemic somatosensory cortex, lateral thalamus, and hippocampal circuit activation. Immunohistochemical analysis revealed regional differences in myelination, which coincide with these activity patterns. Astrocytes and blood vessel endothelial cells also expressed cfos during HI.
Using a combination of EEG, seizure semiology analysis, and whole-brain neuronal activity mapping, we suggest that this rodent model of neonatal HI results in EEG patterns similar to those observed in human neonates. Activation patterns revealed in this study help explain complex seizure behaviors and EEG patterns observed in neonatal HI injury. This pattern may be, in part, secondary to regional differences in development in the neonatal brain. ANN NEUROL 2019;86:927-938.
利用脑电图(EEG)、行为和全脑神经元活动图谱,确定新生儿缺氧缺血(HI)发作期间和发作传播过程中的活跃回路。
在新生后第 10 天使用单侧颈动脉结扎和全脑缺氧使小鼠暴露于 HI。在整个实验过程中记录 EEG 和视频。使用即时早期基因报告小鼠,在 90 分钟的窗口期间,表达 cfos 的活性细胞被永久标记为报告蛋白 tdTomato。在 1 周后,允许报告蛋白的最大表达,用共聚焦显微镜对整个大脑进行处理、脂质清除和成像。对活性神经元(tdTomato/NeuN 共定位)进行全脑重建和分析。
在该模型中,HI 导致了双侧或单侧强直-阵挛和非惊厥性的发作行为。小鼠表现出特征性的 EEG 背景模式,如爆发抑制和抑制。神经元活动图谱显示双侧运动皮层和单侧、缺血体感皮层、外侧丘脑和海马回电路激活。免疫组织化学分析显示髓鞘化存在区域差异,与这些活动模式一致。在 HI 期间,星形胶质细胞和血管内皮细胞也表达 cfos。
通过结合 EEG、发作半定性分析和全脑神经元活动图谱,我们提出这种新生鼠 HI 模型导致的 EEG 模式与在人类新生儿中观察到的相似。在这项研究中揭示的激活模式有助于解释新生儿 HI 损伤中观察到的复杂发作行为和 EEG 模式。这种模式可能部分是由于新生儿大脑发育的区域差异所致。