文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

早期更新世牙釉蛋白组来自德马尼西解决了 Stephanorhinus 的系统发育。

Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny.

机构信息

Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.

Evolutionary Genomics Section, Globe Institute, University of Copenhagen, Copenhagen, Denmark.

出版信息

Nature. 2019 Oct;574(7776):103-107. doi: 10.1038/s41586-019-1555-y. Epub 2019 Sep 11.


DOI:10.1038/s41586-019-1555-y
PMID:31511700
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6894936/
Abstract

The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa. However, the irreversible post-mortem degradation of ancient DNA has so far limited its recovery-outside permafrost areas-to specimens that are not older than approximately 0.5 million years (Myr). By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I, and suggested the presence of protein residues in fossils of the Cretaceous period-although with limited phylogenetic use. In the absence of molecular evidence, the speciation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch, using the proteome of dental enamel from a Stephanorhinus tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia). Molecular phylogenetic analyses place this Stephanorhinus as a sister group to the clade formed by the woolly rhinoceros (Coelodonta antiquitatis) and Merck's rhinoceros (Stephanorhinus kirchbergensis). We show that Coelodonta evolved from an early Stephanorhinus lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus Stephanorhinus is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel-which is the hardest tissue in vertebrates, and is highly abundant in the fossil record-can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation.

摘要

古 DNA 测序使得灭绝分类单元的物种形成、迁移和混合事件得以重建。然而,古 DNA 死后不可逆转的降解,迄今为止限制了它在除了永冻区以外的地区的回收,仅限于不超过大约 0.5 百万年(Myr)的标本。相比之下,串联质谱分析使得大约 1.5Myr 古老的 I 型胶原蛋白的测序成为可能,并表明在白垩纪化石中存在蛋白质残基——尽管在系统发育上的应用有限。在缺乏分子证据的情况下,早更新世和中更新世几个灭绝物种的物种形成仍然存在争议。在这里,我们利用从格鲁吉亚南高加索 Dmanisi 考古遗址发现的大约 1.77Myr 旧的 Stephanorhinus 牙齿的牙釉质蛋白质组,解决了更新世时期欧亚犀牛科的系统发育关系。分子系统发育分析将这种 Stephanorhinus 置于由披毛犀(Coelodonta antiquitatis)和 Merck 的犀牛(Stephanorhinus kirchbergensis)组成的进化枝的姐妹群中。我们表明,Coelodonta 从早期的 Stephanorhinus 谱系进化而来,而这个后者属至少包括两个不同的进化谱系。因此,Stephanorhinus 属目前是并系的,需要对其进行系统修订。我们证明,对早更新世牙釉质蛋白质组的测序克服了基于古胶原或 DNA 进行系统发育推断的局限性。我们的方法还提供了来自 Dmanisi 的其他标本的性别和分类分配的附加信息。我们的研究结果表明,对古牙釉质蛋白质组的研究——牙釉质是脊椎动物中最坚硬的组织,在化石记录中非常丰富——可以将分子进化的重建进一步推向早更新世,超过了古 DNA 保存的现有限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/d8ecbca50491/EMS84015-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/2126002d950a/EMS84015-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/8145f7f4410b/EMS84015-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/55d1508b3327/EMS84015-f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/68dd8f486fd8/EMS84015-f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/85c6300a35af/EMS84015-f009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/489f3ca0fea4/EMS84015-f010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/d1f582658aad/EMS84015-f011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/1278aa1f5366/EMS84015-f012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/0cb373703c88/EMS84015-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/deb135a9daad/EMS84015-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/8e4b909fe8f8/EMS84015-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/d8ecbca50491/EMS84015-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/2126002d950a/EMS84015-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/8145f7f4410b/EMS84015-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/55d1508b3327/EMS84015-f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/68dd8f486fd8/EMS84015-f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/85c6300a35af/EMS84015-f009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/489f3ca0fea4/EMS84015-f010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/d1f582658aad/EMS84015-f011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/1278aa1f5366/EMS84015-f012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/0cb373703c88/EMS84015-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/deb135a9daad/EMS84015-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/8e4b909fe8f8/EMS84015-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/6894936/d8ecbca50491/EMS84015-f004.jpg

相似文献

[1]
Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny.

Nature. 2019-9-11

[2]
Middle Pleistocene protein sequences from the rhinoceros genus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae.

PeerJ. 2017-3-14

[3]
The First Find of Merck's Rhinoceros (Mammalia, Perissodactyla, Rhinocerotidae, Stephanorhinus kirchbergensis Jäger, 1839) Remains in the Russian Far East.

Dokl Biol Sci. 2020-3

[4]
The dental proteome of Homo antecessor.

Nature. 2020-4-1

[5]
Paleoecology, biochronology, and paleobiogeography of Eurasian Rhinocerotidae during the Early Pleistocene: The contribution of the fossil material from Dmanisi (Georgia, Southern Caucasus).

J Hum Evol. 2021-7

[6]
The first European woolly rhinoceros mitogenomes, retrieved from cave hyena coprolites, suggest long-term phylogeographic differentiation.

Biol Lett. 2023-11

[7]
Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution.

BMC Evol Biol. 2009-5-11

[8]
Pre-extinction Demographic Stability and Genomic Signatures of Adaptation in the Woolly Rhinoceros.

Curr Biol. 2020-10-5

[9]
Ancient mitogenomes reveal a high maternal genetic diversity of Pleistocene woolly rhinoceros in Northern China.

BMC Ecol Evol. 2023-9-26

[10]
Ancient DNA analysis reveals woolly rhino evolutionary relationships.

Mol Phylogenet Evol. 2003-9

引用本文的文献

[1]
Bone Adhered Sediments as a Source of Target and Environmental DNA and Proteins.

Mol Biol Evol. 2025-9-1

[2]
Phylogenetically informative proteins from an Early Miocene rhinocerotid.

Nature. 2025-7-9

[3]
Eighteen million years of diverse enamel proteomes from the East African Rift.

Nature. 2025-7

[4]
Enamel proteins reveal biological sex and genetic variability in southern African .

Science. 2025-5-29

[5]
Phylogenetic Signal in Primate Tooth Enamel Proteins and its Relevance for Paleoproteomics.

Genome Biol Evol. 2025-2-3

[6]
Enamel histomorphometry, growth patterns and developmental trajectories of the first deciduous molar in an Italian early medieval skeletal series.

PLoS One. 2024-12-5

[7]
Paleoproteomics sheds light on million-year-old fossils.

Nat Rev Mol Cell Biol. 2025-1

[8]
Automated High-Throughput Biological Sex Identification from Archeological Human Dental Enamel Using Targeted Proteomics.

J Proteome Res. 2024-11-1

[9]
A label-free quantification method for assessing sex from modern and ancient bovine tooth enamel.

Sci Rep. 2024-8-6

[10]
Spectra without stories: reporting 94% dark and unidentified ancient proteomes.

Open Res Eur. 2024-4-15

本文引用的文献

[1]
A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau.

Nature. 2019-5-1

[2]
Updated MS²PIP web server delivers fast and accurate MS² peak intensity prediction for multiple fragmentation methods, instruments and labeling techniques.

Nucleic Acids Res. 2019-7-2

[3]
Ancient Biomolecules and Evolutionary Inference.

Annu Rev Biochem. 2018-4-25

[4]
Palaeoproteomic Profiling of Conservation Layers on a 14th Century Italian Wall Painting.

Angew Chem Int Ed Engl. 2018-6-18

[5]
Solid Digestion of Demineralized Bone as a Method To Access Potentially Insoluble Proteins and Post-Translational Modifications.

J Proteome Res. 2017-11-22

[6]
Middle Pleistocene protein sequences from the rhinoceros genus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae.

PeerJ. 2017-3-14

[7]
Expansion for the Brachylophosaurus canadensis Collagen I Sequence and Additional Evidence of the Preservation of Cretaceous Protein.

J Proteome Res. 2017-2-3

[8]
The MaxQuant computational platform for mass spectrometry-based shotgun proteomics.

Nat Protoc. 2016-10-27

[9]
Protein sequences bound to mineral surfaces persist into deep time.

Elife. 2016-9-27

[10]
Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne.

Proc Natl Acad Sci U S A. 2016-10-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索