Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA.
J Chem Phys. 2019 Sep 14;151(10):104110. doi: 10.1063/1.5099936.
Collective excitations of crystal vibrations or normal modes are customarily described using complex normal mode coordinates. While appropriate for calculating phonon dispersion, the mixed representation involving the complex conjugates does not allow the construction of equivalent phonon occupation number or modal dynamical quantities such as the energy or heat current specific to a wave-vector direction (q). Starting from a canonical solution that includes waves going to the left and right directions, we cast the Hamiltonian, normal mode population, and heat current in an exactly diagonalizable representation using real normal mode amplitudes. We show that the use of real amplitudes obviates the need for a complex modal heat current while making the passage to second quantization more apparent. Using nonequilibrium molecular dynamics simulations, we then compute the net modal energy, heat current, and equivalent phonon population in a linear lattice subjected to a thermal gradient. Our analysis paves a tractable path for probing and computing the direction-dependent thermal-phononic modal properties of dielectric lattices using atomistic simulations.
晶体振动或正常模式的集体激发通常使用复模态坐标来描述。虽然对于计算声子色散是合适的,但涉及复数共轭的混合表示形式不允许构建等效的声子占据数或模态动力学量,例如特定于波矢方向(q)的能量或热流。从包括向左和向右传播的波的正则解出发,我们使用实模态振幅在完全可对角化的表示中构造哈密顿量、模态种群和热流。我们表明,使用实振幅可以避免对复模态热流的需求,同时使通向二次量子化的过程更加明显。然后,我们使用非平衡分子动力学模拟计算了线性晶格在热梯度作用下的净模态能量、热流和等效声子种群。我们的分析为使用原子模拟探测和计算介电晶格的与方向有关的热声子模态特性铺平了一条可行的道路。