Huang Yuqing, Yu Jianguo, Cinbiz M Nedim, Eapen Jacob
Department of Nuclear Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
Fuels Modeling and Simulation, Idaho National Laboratory, Idaho Falls, ID, 83402, USA.
Sci Rep. 2025 May 25;15(1):18144. doi: 10.1038/s41598-025-02515-9.
For the next-generation high temperature microreactors, yttrium dihydride (YH) is an attractive solid state neutron moderator. Despite a number of recent investigations, the mechanism of hydrogen transport remains poorly understood. Experimental evaluations of diffusivity are inconclusive with large variations in diffusivities and activation energies. In this work, we perform ab initio molecular dynamics (AIMD) simulations on YH for temperatures spanning 300 K to 1200 K. Our main finding is that YH shows a superionic-like behavior with hydrogen atoms hopping from one native site to another above a characteristic temperature of 800 K. This correlated motion results in quasi-one-dimensional string-like displacements that enable the hydrogen atoms to diffuse rapidly. We confirm that the octahedral sites are mostly unoccupied, although channeling through them is the most favored pathway between lattice hops above 800 K. At the highest temperature of 1200 K, the string relaxation time is merely of the order of a few picoseconds, which indicates a liquid-like diffusive behavior. Based on the formation of spontaneous thermal vacancies, an order-disorder crossover temperature T ~ 800 K is established for YH with an activation energy of 0.83 eV for hydrogen diffusion in the superionic-like state.
对于下一代高温微反应器而言,氢化钇(YH)是一种极具吸引力的固态中子慢化剂。尽管近期已有多项研究,但氢传输机制仍未得到充分理解。扩散率的实验评估结果并不确定,扩散率和活化能存在很大差异。在这项工作中,我们对YH进行了从头算分子动力学(AIMD)模拟,温度范围为300K至1200K。我们的主要发现是,YH在高于800K的特征温度时表现出类似超离子的行为,氢原子从一个原生位置跳跃到另一个位置。这种相关运动导致准一维的线状位移,使氢原子能够快速扩散。我们证实,八面体位置大多未被占据,尽管在800K以上的晶格跳跃之间,通过这些位置的通道是最有利的路径。在1200K的最高温度下,线状弛豫时间仅为几皮秒量级,这表明存在类似液体的扩散行为。基于自发热空位的形成,为YH确定了一个有序-无序转变温度T ~ 800K,在类似超离子状态下氢扩散的活化能为0.83eV。