Suppr超能文献

计算预测无规卷曲区域的功能。

Computational prediction of functions of intrinsically disordered regions.

机构信息

Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States.

Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States.

出版信息

Prog Mol Biol Transl Sci. 2019;166:341-369. doi: 10.1016/bs.pmbts.2019.04.006. Epub 2019 May 20.

Abstract

Intrinsically disorder regions (IDRs) are abundant in nature, particularly among Eukaryotes. While they facilitate a wide spectrum of cellular functions including signaling, molecular assembly and recognition, translation, transcription and regulation, only several hundred IDRs are annotated functionally. This annotation gap motivates the development of fast and accurate computational methods that predict IDR functions directly from protein sequences. We introduce and describe a comprehensive collection of 25 methods that provide accurate predictions of IDRs that interact with proteins and nucleic acids, that function as flexible linkers and that moonlight multiple functions. Virtually all of these predictors can be accessed online and many were developed in the last few years. They utilize a wide range of predictive architectures and take advantage of modern machine learning algorithms. Our empirical analysis shows that predictors that are available as webservers enjoy high rates of citations, attesting to their practical value and popularity. The most cited methods include DISOPRED3, ANCHOR, alpha-MoRFpred, MoRFpred, fMoRFpred and MoRFCHiBi. We present two case studies to demonstrate that predictions produced by these computational tools are relatively easy to interpret and that they deliver valuable functional clues. However, the current computational tools cover a relatively narrow range of disorder functions. Further development efforts that would cover a broader range of functions should be pursued. We demonstrate that a sufficient amount of functionally annotated IDRs that are associated with several other disorder functions is already available and can be used to design and validate novel predictors.

摘要

无规则区域(IDR)在自然界中大量存在,尤其是在真核生物中。虽然它们促进了广泛的细胞功能,包括信号转导、分子组装和识别、翻译、转录和调控,但只有几百个 IDR 被功能注释。这种注释差距促使开发快速准确的计算方法,这些方法可以直接从蛋白质序列预测 IDR 的功能。我们介绍并描述了一个全面的 25 种方法的集合,这些方法提供了与蛋白质和核酸相互作用的 IDR、作为灵活接头的 IDR 和多任务功能的 IDR 的准确预测。实际上,这些预测器几乎都可以在线访问,并且许多是在过去几年中开发的。它们利用了广泛的预测架构,并利用了现代机器学习算法。我们的实证分析表明,可作为网络服务器访问的预测器具有很高的引用率,证明了它们的实际价值和受欢迎程度。引用最多的方法包括 DISOPRED3、ANCHOR、alpha-MoRFpred、MoRFpred、fMoRFpred 和 MoRFCHiBi。我们展示了两个案例研究,以证明这些计算工具产生的预测相对易于解释,并且它们提供了有价值的功能线索。然而,目前的计算工具只涵盖了相对较窄的无序功能范围。应该进一步努力开发可以涵盖更广泛功能的方法。我们证明,已经有足够数量的与其他几种无序功能相关的功能注释的 IDR 可用,并且可以用于设计和验证新的预测器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验