Suppr超能文献

DeepDISOBind:通过深度多任务学习准确预测 RNA、DNA 和蛋白质结合的无规卷曲残基。

DeepDISOBind: accurate prediction of RNA-, DNA- and protein-binding intrinsically disordered residues with deep multi-task learning.

机构信息

Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, China.

Department of Computer Science, Virginia Commonwealth University, Richmond, VA, 23284, USA.

出版信息

Brief Bioinform. 2022 Jan 17;23(1). doi: 10.1093/bib/bbab521.

Abstract

Proteins with intrinsically disordered regions (IDRs) are common among eukaryotes. Many IDRs interact with nucleic acids and proteins. Annotation of these interactions is supported by computational predictors, but to date, only one tool that predicts interactions with nucleic acids was released, and recent assessments demonstrate that current predictors offer modest levels of accuracy. We have developed DeepDISOBind, an innovative deep multi-task architecture that accurately predicts deoxyribonucleic acid (DNA)-, ribonucleic acid (RNA)- and protein-binding IDRs from protein sequences. DeepDISOBind relies on an information-rich sequence profile that is processed by an innovative multi-task deep neural network, where subsequent layers are gradually specialized to predict interactions with specific partner types. The common input layer links to a layer that differentiates protein- and nucleic acid-binding, which further links to layers that discriminate between DNA and RNA interactions. Empirical tests show that this multi-task design provides statistically significant gains in predictive quality across the three partner types when compared to a single-task design and a representative selection of the existing methods that cover both disorder- and structure-trained tools. Analysis of the predictions on the human proteome reveals that DeepDISOBind predictions can be encoded into protein-level propensities that accurately predict DNA- and RNA-binding proteins and protein hubs. DeepDISOBind is available at https://www.csuligroup.com/DeepDISOBind/.

摘要

具有无规则区域(IDR)的蛋白质在真核生物中很常见。许多 IDR 与核酸和蛋白质相互作用。这些相互作用的注释得到了计算预测器的支持,但迄今为止,仅发布了一个预测与核酸相互作用的工具,最近的评估表明,当前的预测器提供的准确性水平有限。我们开发了 DeepDISOBind,这是一种创新的深度多任务架构,可以从蛋白质序列中准确预测脱氧核糖核酸(DNA)、核糖核酸(RNA)和蛋白质结合的 IDR。DeepDISOBind 依赖于丰富信息的序列图,该序列图由创新的多任务深度神经网络处理,其中后续层逐渐专门用于预测与特定伙伴类型的相互作用。通用输入层链接到区分蛋白质和核酸结合的层,进一步链接到区分 DNA 和 RNA 相互作用的层。实证测试表明,与单任务设计和涵盖无序和结构训练工具的现有方法的代表性选择相比,这种多任务设计在三个伙伴类型的预测质量方面提供了统计学上的显著提高。对人类蛋白质组的预测分析表明,DeepDISOBind 的预测可以编码为蛋白质水平的倾向,这些倾向可以准确预测 DNA 和 RNA 结合蛋白和蛋白质枢纽。DeepDISOBind 可在 https://www.csuligroup.com/DeepDISOBind/ 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验