School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
Artif Intell Med. 2019 Jul;98:27-34. doi: 10.1016/j.artmed.2019.06.005. Epub 2019 Jul 4.
The objective of this study is to devise a modelling strategy for attaining in-silico models replicating human physiology and, in particular, the activity of the autonomic nervous system.
Discrete Multiphysics (a multiphysics modelling technique) and Reinforcement Learning (a Machine Learning algorithm) are combined to achieve an in-silico model with the ability of self-learning and replicating feedback loops occurring in human physiology. Computational particles, used in Discrete Multiphysics to model biological systems, are associated to (computational) neurons: Reinforcement Learning trains these neurons to behave like they would in real biological systems.
As benchmark/validation, we use the case of peristalsis in the oesophagus. Results show that the in-silico model effectively learns by itself how to propel the bolus in the oesophagus.
The combination of first principles modelling (e.g. multiphysics) and machine learning (e.g. Reinforcement Learning) represents a new powerful tool for in-silico modelling of human physiology. Biological feedback loops occurring, for instance, in peristaltic or metachronal motion, which until now could not be accounted for in in-silico models, can be tackled by the proposed technique.
本研究旨在设计一种建模策略,以获得能够复制人体生理学,特别是自主神经系统活动的计算机模拟模型。
离散多物理场(一种多物理场建模技术)和强化学习(一种机器学习算法)相结合,以实现具有自我学习能力的计算机模拟模型,并复制人体生理学中发生的反馈循环。离散多物理场中用于模拟生物系统的计算粒子与(计算)神经元相关联:强化学习训练这些神经元以类似于真实生物系统中的行为方式。
作为基准/验证,我们使用食管蠕动的情况。结果表明,计算机模拟模型可以有效地自行学习如何在食管中推进食团。
基于原理的建模(例如多物理场)和机器学习(例如强化学习)的结合代表了一种用于人体生理学计算机模拟的新的强大工具。例如,在蠕动或协调运动中发生的生物反馈循环,迄今为止在计算机模拟模型中无法考虑到的,都可以通过所提出的技术来解决。