School of Mechanical & Aerospace Engineering, Oklahoma State University, Stillwater, OK, United States of America.
The McDougall School of Petroleum Engineering, The University of Tulsa, Tulsa, OK, United States of America.
PLoS One. 2021 Feb 11;16(2):e0246092. doi: 10.1371/journal.pone.0246092. eCollection 2021.
Hybrid physics-machine learning models are increasingly being used in simulations of transport processes. Many complex multiphysics systems relevant to scientific and engineering applications include multiple spatiotemporal scales and comprise a multifidelity problem sharing an interface between various formulations or heterogeneous computational entities. To this end, we present a robust hybrid analysis and modeling approach combining a physics-based full order model (FOM) and a data-driven reduced order model (ROM) to form the building blocks of an integrated approach among mixed fidelity descriptions toward predictive digital twin technologies. At the interface, we introduce a long short-term memory network to bridge these high and low-fidelity models in various forms of interfacial error correction or prolongation. The proposed interface learning approaches are tested as a new way to address ROM-FOM coupling problems solving nonlinear advection-diffusion flow situations with a bifidelity setup that captures the essence of a broad class of transport processes.
混合物理-机器学习模型越来越多地被用于传输过程的模拟中。许多与科学和工程应用相关的复杂多物理系统包括多个时空尺度,并包含一个多保真度问题,在各种公式或异构计算实体之间共享一个接口。为此,我们提出了一种稳健的混合分析和建模方法,该方法结合了基于物理的全阶模型 (FOM) 和数据驱动的降阶模型 (ROM),以形成混合保真度描述之间的集成方法的构建块,以实现预测数字孪生技术。在接口处,我们引入了长短期记忆网络来桥接这些高和低保真度模型,以进行各种形式的界面误差校正或延拓。所提出的接口学习方法被测试为解决 ROM-FOM 耦合问题的新方法,该方法解决了具有双保真度设置的非线性对流扩散流动情况,该设置捕获了广泛的传输过程类别的本质。