Institute of Molecular Physics Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland.
Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
Carbohydr Polym. 2019 Dec 1;225:115196. doi: 10.1016/j.carbpol.2019.115196. Epub 2019 Aug 13.
In the present study, we report the synthesis, electrical and dynamic properties of a new generation bio-based nanocomposite, that is a proton-exchange membrane based on nanocrystalline cellulose (CNC) and imidazole (Im). CNC serves as supporting material and imidazole acts as a proton donor and proton acceptor at the same time. The nanocomposite (1.3 CNC-Im) was synthesized as a film and shows proton conductivity equal to 4.0 × 10 S/m at 160 °C in anhydrous conditions. Analysis of impedance measurements and NMR spectra provided some insight into the macroscopic and microscopic processes involved in proton transport in 1.3 CNC-Im. Local processes such as reorientation of imidazole rings and breaking of hydrogen bonds are identified and their activation energies are calculated. The energies of the macroscopic and microscopic proton transport in CNC-Im film are correlated. The percolation model used confirmed the percolation nature of conductivity in cellulose composites with imidazole.
在本研究中,我们报告了新一代基于生物的纳米复合材料的合成、电学和动力学性质,该复合材料是一种基于纳米纤维素 (CNC) 和咪唑 (Im) 的质子交换膜。CNC 用作支撑材料,而咪唑同时充当质子供体和质子受体。纳米复合材料 (1.3 CNC-Im) 被合成为薄膜,并在无水条件下于 160°C 时表现出 4.0×10-3 S/m 的质子电导率。阻抗测量和 NMR 谱分析提供了一些关于质子在 1.3 CNC-Im 中传输的宏观和微观过程的见解。确定了局部过程,如咪唑环的重排和氢键的断裂,并计算了它们的活化能。还对 CNC-Im 薄膜中宏观和微观质子传输的能量进行了关联。使用的渗流模型证实了纤维素复合材料中咪唑的电导率具有渗流性质。