Suppr超能文献

钙调蛋白调控 Na1.5 产生不同致心律失常表型的基本机制。

Elementary mechanisms of calmodulin regulation of Na1.5 producing divergent arrhythmogenic phenotypes.

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218;

Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130.

出版信息

Proc Natl Acad Sci U S A. 2021 May 25;118(21). doi: 10.1073/pnas.2025085118.

Abstract

In cardiomyocytes, Na1.5 channels mediate initiation and fast propagation of action potentials. The Ca-binding protein calmodulin (CaM) serves as a de facto subunit of Na1.5. Genetic studies and atomic structures suggest that this interaction is pathophysiologically critical, as human mutations within the Na1.5 carboxy-terminus that disrupt CaM binding are linked to distinct forms of life-threatening arrhythmias, including long QT syndrome 3, a "gain-of-function" defect, and Brugada syndrome, a "loss-of-function" phenotype. Yet, how a common disruption in CaM binding engenders divergent effects on Na1.5 gating is not fully understood, though vital for elucidating arrhythmogenic mechanisms and for developing new therapies. Here, using extensive single-channel analysis, we find that the disruption of Ca-free CaM preassociation with Na1.5 exerts two disparate effects: 1) a decrease in the peak open probability and 2) an increase in persistent Na openings. Mechanistically, these effects arise from a CaM-dependent switch in the Na inactivation mechanism. Specifically, CaM-bound channels preferentially inactivate from the open state, while those devoid of CaM exhibit enhanced closed-state inactivation. Further enriching this scheme, for certain mutant Na1.5, local Ca fluctuations elicit a rapid recruitment of CaM that reverses the increase in persistent Na current, a factor that may promote beat-to-beat variability in late Na current. In all, these findings identify the elementary mechanism of CaM regulation of Na1.5 and, in so doing, unravel a noncanonical role for CaM in tuning ion channel gating. Furthermore, our results furnish an in-depth molecular framework for understanding complex arrhythmogenic phenotypes of Na1.5 channelopathies.

摘要

在心肌细胞中,Na1.5 通道介导动作电位的起始和快速传播。钙结合蛋白钙调蛋白(CaM)作为 Na1.5 的实际亚基。遗传研究和原子结构表明,这种相互作用在病理生理上是至关重要的,因为人类在 Na1.5 羧基末端的突变破坏了 CaM 的结合,与不同形式的危及生命的心律失常有关,包括长 QT 综合征 3,一种“功能获得”缺陷,和 Brugada 综合征,一种“功能丧失”表型。然而,共同的 CaM 结合中断如何对 Na1.5 门控产生不同的影响尚不完全清楚,尽管这对于阐明心律失常机制和开发新疗法至关重要。在这里,我们使用广泛的单通道分析发现,Ca 自由 CaM 与 Na1.5 预先结合的破坏会产生两种不同的效果:1)峰值开放概率降低,2)持续 Na 开放增加。从机制上讲,这些效果源于 Na 失活机制中依赖 CaM 的开关。具体来说,与 CaM 结合的通道优先从开放状态失活,而那些没有 CaM 的通道则表现出增强的关闭状态失活。进一步丰富这一方案,对于某些突变型 Na1.5,局部 Ca 波动会引发 CaM 的快速募集,从而逆转持续 Na 电流的增加,这一因素可能会促进晚期 Na 电流的逐搏变化。总之,这些发现确定了 CaM 对 Na1.5 调节的基本机制,并由此揭示了 CaM 在调节离子通道门控方面的非典型作用。此外,我们的结果为理解 Na1.5 通道病复杂的致心律失常表型提供了深入的分子框架。

相似文献

9
A Mechanism of Calmodulin Modulation of the Human Cardiac Sodium Channel.钙调蛋白调节人心房钠通道的机制。
Structure. 2018 May 1;26(5):683-694.e3. doi: 10.1016/j.str.2018.03.005. Epub 2018 Apr 5.

引用本文的文献

9
Calmodulin Mutations in Human Disease.钙调蛋白突变与人类疾病
Channels (Austin). 2023 Dec;17(1):2165278. doi: 10.1080/19336950.2023.2165278.

本文引用的文献

8
SCN2A channelopathies: Mechanisms and models.SCN2A 通道病:机制与模型。
Epilepsia. 2019 Dec;60 Suppl 3:S68-S76. doi: 10.1111/epi.14731.
10
Structure of the Cardiac Sodium Channel.心脏钠离子通道的结构。
Cell. 2020 Jan 9;180(1):122-134.e10. doi: 10.1016/j.cell.2019.11.041. Epub 2019 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验