Suppr超能文献

二维 TiO-g-CN 具有优异导电性的 TiN 和 CO 桥键,可协同光电催化降解双酚 A。

Two-dimensional TiO-g-CN with both TiN and CO bridges with excellent conductivity for synergistic photoelectrocatalytic degradation of bisphenol A.

机构信息

Department of Chemistry, Tongji University, Shanghai 200092, PR China.

School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, PR China; Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Beijing 100191, PR China.

出版信息

J Colloid Interface Sci. 2019 Dec 1;557:227-235. doi: 10.1016/j.jcis.2019.08.088. Epub 2019 Aug 26.

Abstract

TiO-mediated photoelectrocatalysis is emerging as a promising way to degrade refractory contaminates. Nevertheless, the concrete application of TiO is seriously limited because of its poor conductivity, unexpected recombination of photoinduced charges, and broad bandgap (3.2 eV). In this work, two-dimensional (2D) TiO-g-CN with both TiN and CO bridges is successfully constructed and assembled with carbon fibers to realize efficient photoelectrochemical (PEC) pollutant degradation. Density functional theory (DFT) calculations suggest that the generated interface heterojunction of 2D TiO-g-CN can provide quick charge separation and transfer via both TiN and CO bridges, resulting in a prepared catalyst that can facilitate the effective separation and transportation of photoinduced electron-hole pairs. In addition, according to electrochemical impedance spectroscopy, the 2D TiO-g-CN composition with the generated interface heterojunction reduces internal resistance and becomes more conducive to electrocatalysis compared with pure TiO or g-CN. Using bisphenol A (BPA) as a typical refractory contaminate, the 2D TiO-g-CN/carbon fiber electrode exhibits a higher PEC activity, with reaction rates 1.7, 2.5, and 3 times faster than that of g-CN, TiO, and commercial P25, respectively. Furthermore, the greatest BPA degradation of the PEC system is much higher than the sum of the photocatalytic (PC) and electrocatalytic (EC) systems. Additionally, the enhanced activities of electrocatalysis and photocatalysis for the degradation of BPA is attributed to the collaboration of the interfacial effect and excellent electrical conductivity derived from the 2D structure of the TiO-g-CN heterojunction. This study proposes a new tactic for the design and construction of photoelectrocatalysts via a synergistic interfacial effect to improve the photocatalytic and electrocatalytic degradation activities for refractory pollutants.

摘要

TiO 介导的光电催化作为一种降解难处理污染物的有前途的方法正在出现。然而,由于 TiO 的导电性差、光生电荷的意外复合和宽带隙(3.2 eV),其具体应用受到严重限制。在这项工作中,成功构建了具有 TiN 和 CO 桥的二维(2D)TiO-g-CN,并与碳纤维组装,以实现高效光电化学(PEC)污染物降解。密度泛函理论(DFT)计算表明,2D TiO-g-CN 生成的界面异质结可以通过 TiN 和 CO 桥提供快速的电荷分离和转移,从而制备出一种可以促进光生电子-空穴对有效分离和传输的催化剂。此外,根据电化学阻抗谱,具有生成界面异质结的 2D TiO-g-CN 组成降低了内阻,与纯 TiO 或 g-CN 相比,更有利于电催化。以双酚 A(BPA)作为典型的难处理污染物,2D TiO-g-CN/碳纤维电极表现出更高的 PEC 活性,反应速率分别比 g-CN、TiO 和商业 P25 快 1.7、2.5 和 3 倍。此外,PEC 体系中 BPA 的最大降解量远高于光催化(PC)和电催化(EC)体系的总和。此外,电催化和光催化降解 BPA 活性的增强归因于界面效应协同作用和源自 TiO-g-CN 异质结的二维结构的优异导电性。本研究提出了一种通过协同界面效应设计和构建光催化剂的新策略,以提高难处理污染物的光催化和电催化降解活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验